Description Usage Arguments Value Examples
Function clusterBased.filter selects only those
proposed compounds
for which a quasimolecular adduct or fragment has been also
proposed in another peak of the same cluster.
Function dataPrep prepares the intensity and retention
time data for
spectral clustering.
Function .LaplacianNg computes a normalized Laplacian matrix.
Function eps.optimization optimizes the epsilon
parameter of the dbscan algorithm.
Function featuresClustering performs spectral clustering
to group those features
that come from the same metabolite. It uses dataPrep,
.LaplacianNg, k.optimization
and eps.optimization functions. The correlation is computed using the
function cor(use = "pairwise.complete.obs").
Function k.optimization optimizes the number of clusters.
This value will be used to define the number
of eigenvectors considered in the spectral clustering.
Function recoveringPeaks recovers the peaks that
have been removed
from the first annotated object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | clusterBased.filter(
df,
Add.Id = NULL,
Freq = 0.5,
Info.Add = NULL,
polarity,
do.Par = TRUE,
nClust = 2
)
dataPrep(IData, Rt, Rt.05 = 5, use = "everything", method = "pearson")
eps.optimization(
pca.to.tune,
data.prep,
IData,
use = "everything",
k.tuned,
method = "pearson",
do.Par,
nClust
)
featuresClustering(
Peak.List,
Intensity.idx,
use = "everything",
method = "pearson",
Rt.05 = 5,
do.Par = TRUE,
nClust
)
k.optimization(
pca.to.tune,
data.prep,
IData,
nrow.List,
use = "everything",
method = "pearson",
do.Par = TRUE,
nClust
)
recoveringPeaks(Annotated.Tab, MH.Tab)
|
df |
Columns may contain: "Compound", "Add.Id", "Isotope" "Compound" for the proposed candidates. "Add.Id" for the adduct or fragment proposed. "Isotope" to identify the proposed isotopologues. |
Add.Id |
It indicates the adduct(s) or fragment(s) that are required to exist. If NULL, those adducts with an observed frequency equal or higher than 0.50 will be used. |
Freq |
Minimum observed frequency to consider an adduct or a fragment to apply the filter (Def: 0.5). |
Info.Add |
Data frame with adducts and in source fragments information. If NULL, the default mWISE table will be loaded. The columns should be:
|
polarity |
Acquisition mode of the study. It can be "positive" or "negative". |
do.Par |
TRUE if parallel computing is required. Def: TRUE |
nClust |
Number of cores that may be used if do.Par = TRUE. |
IData |
Data frame containing the intensity for each sample in its columns. |
Rt |
Vector containing the retention times. |
Rt.05 |
Retention time value to get a similarity of 0.5. |
use |
An optional character string giving a method for computing correlations in the presence of missing values. Default is "everything", but when missing values are present, "pairwise.complete.obs" is required. |
method |
A character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman". |
pca.to.tune |
PCA to perform the spectral clustering. |
data.prep |
Result returned by |
k.tuned |
Optimized number of clusters (k) computed using
|
Peak.List |
Data frame containing the LC-MS features. Columns should contain:
|
Intensity.idx |
Numeric vector indicating the column index for the intensities |
nrow.List |
Numeric vector indicating the number of peaks. |
Annotated.Tab |
Data frame returned by |
MH.Tab |
Data frame returned by |
Function clusterBased.filter returns a data frame of
filtered candidates.
Function dataPrep returns a list containing the
Gaussian similarity
matrices for the retention time differences
and the intensities correlation.
Function eps.optimization returns an optimized epsilon
parameter for dbscan algorithm.
Function featuresClustering returns the input peak list
with an additional column named pcgroup
that indicates the clustering.
Function k.optimization returns the ptimized number of
clusters (k) using kmeans algorithm.
Function recoveringPeaks returns a data frame of
filtered candidates but
with all peaks recovered.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | data("sample.keggDB")
Cpd.Add <- CpdaddPreparation(KeggDB = sample.keggDB, do.Par = FALSE)
data(sample.dataset)
Peak.List <- sample.dataset$Positive$Input
Annotated.List <- matchingStage(Peak.List = Peak.List, Cpd.Add = Cpd.Add,
polarity = "positive", do.Par = FALSE)
Intensity.idx <- seq(27,38)
clustered <- featuresClustering(Peak.List = Peak.List,
Intensity.idx = Intensity.idx,
do.Par = FALSE)
Annotated.Tab <- Annotated.List$Peak.Cpd
Annotated.Tab <- merge(Annotated.Tab,
clustered$Peak.List[,c("Peak.Id", "pcgroup")],
by = "Peak.Id")
MH.Tab <- clusterBased.filter(df = Annotated.Tab,
polarity = "positive")
data(sample.dataset)
Peak.List <- sample.dataset$Positive$Input
Intensity.idx <- seq(27,38)
clustered <- featuresClustering(Peak.List = Peak.List,
Intensity.idx = Intensity.idx,
do.Par = FALSE)
data("sample.keggDB")
Cpd.Add <- CpdaddPreparation(KeggDB = sample.keggDB,
do.Par = FALSE)
data(sample.dataset)
Peak.List <- sample.dataset$Positive$Input
Annotated.List <- matchingStage(Peak.List = Peak.List, Cpd.Add = Cpd.Add,
polarity = "positive", do.Par = FALSE)
Intensity.idx <- seq(27,38)
clustered <- featuresClustering(Peak.List = Peak.List,
Intensity.idx = Intensity.idx,
do.Par = FALSE)
Annotated.Tab <- Annotated.List$Peak.Cpd
Annotated.Tab <- merge(Annotated.Tab,
clustered$Peak.List[,c("Peak.Id", "pcgroup")],
by = "Peak.Id")
MH.Tab <- clusterBased.filter(df = Annotated.Tab,
polarity = "positive")
recoveredPeaks <- recoveringPeaks(Annotated.Tab = Annotated.Tab,
MH.Tab = MH.Tab)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.