library(readr)
library(dplyr)
library(ggplot2)
library(Lahman)
library(geomtextpath)
library(purrr)
# data is read from a Github repository
fg <- read_csv("https://raw.githubusercontent.com/bayesball/HomeRuns2021/main/woba_wts.csv")
compare_plot2 <- function(midYearRange, minPA,
measure, xvar, hof, fg){
# find career PA and midyears and filter
Batting %>%
mutate(PA = ifelse(is.na(SF) == FALSE,
AB + BB + SH + SF + HBP,
AB + BB + SH + HBP)) %>%
group_by(playerID) %>%
summarize(minYear = min(yearID),
maxYear = max(yearID),
midYear = (minYear + maxYear) / 2,
PA = sum(PA),
.groups = "drop") %>%
filter(midYear <= midYearRange[2],
midYear >= midYearRange[1],
PA >= minPA) -> C_info
HOF_label <- ""
if(hof == "yes"){
hof_players <- filter(HallOfFame,
inducted == "Y") %>%
select(playerID) %>% pull()
C_info <- filter(C_info,
playerID %in% hof_players)
HOF_label <- "HOF"
}
# compute stats for each player in list
Batting %>%
filter(playerID %in% C_info$playerID) %>%
inner_join(select(People, playerID,
nameFirst, nameLast),
by = "playerID") %>%
mutate(Name = paste(nameFirst, nameLast)) %>%
group_by(Name, yearID) %>%
summarize(H = sum(H),
AB = sum(AB),
HR = sum(HR),
H = sum(H),
X2B = sum(X2B),
X3B = sum(X3B),
X1B = H - X2B - X3B - HR,
TB = X1B + 2 * X2B + 3 * X3B + 4 * HR,
BB = sum(BB),
HBP = sum(HBP),
SF = sum(SF),
SO = sum(SO),
AVG = H / AB,
RC = TB * (H + BB) / (AB + BB),
.groups = "drop") -> S
# merge fangraphs weights for wOBA
# compute wOBA for each player each season
inner_join(S, select(fg, Season, wBB, wHBP, w1B,
w2B, w3B, wHR),
by = c("yearID" = "Season")) %>%
mutate(wOBA_num = (wBB * BB + wHBP * HBP + w1B * X1B +
w2B * X2B + w3B * X3B + wHR * HR),
wOBA_den = ifelse(is.na(SF) == FALSE,
AB + BB + SF + HBP,
AB + BB + HBP),
wOBA = wOBA_num / wOBA_den,
BB_Rate = 100 * BB / wOBA_den,
SO_Rate = 100 * SO / wOBA_den,
HR_Rate = 100 * HR / wOBA_den) -> S
# function to obtain birthyear for player
get_birthyear <- function(playerid) {
People %>%
filter(playerID == playerid) %>%
mutate(Name = paste(nameFirst, nameLast),
birthyear = ifelse(birthMonth >= 7,
birthYear + 1, birthYear)) %>%
select(Name, birthyear)
}
# collect birthyears and compute ages for each
# player and season
S1 <- map_df(C_info$playerID, get_birthyear)
inner_join(S, S1, by = "Name") %>%
mutate(Age = yearID - birthyear) -> S
# define outcome depending on input
if(measure == "AVG"){
S$Outcome <- S$AVG
S$Weight <- S$AB
YLAB <- "AVG"
}
if(measure == "HR Rate"){
S$Outcome <- S$HR_Rate
S$Weight <- S$wOBA_den
YLAB = "Home Run Rate"
}
if(measure == "wOBA"){
S$Outcome <- S$wOBA
S$Weight <- S$wOBA_den
YLAB = "wOBA"
}
if(measure == "RC"){
S$Outcome <- S$RC
S$Weight <- S$wOBA_den
YLAB = "RC"
}
if(measure == "SO Rate"){
S$Outcome <- S$SO_Rate
S$Weight <- S$wOBA_den
YLAB = "SO Rate"
}
if(measure == "BB Rate"){
S$Outcome <- S$BB_Rate
S$Weight <- S$wOBA_den
YLAB = "BB Rate"
}
# plot versus season or age?
if(xvar == "year"){
S$XVAR <- S$yearID
XLAB <- "Season"
}
if(xvar == "age"){
S$XVAR <- S$Age
XLAB <- "Age"
}
# the graph
plot1 <- ggplot(S,
aes(XVAR, Outcome, color = Name,
weight = Weight,
label = Name)) +
geom_textsmooth(se = FALSE,
method = "loess",
formula = "y ~ x") +
ylab(YLAB) +
xlab(XLAB) +
labs(title = paste(HOF_label, YLAB,
"Career Trajectories"),
color = "Player",
subtitle = paste("Midyear: (",
midYearRange[1], ", ",
midYearRange[2], "), Min PA: ",
minPA, sep = "")) +
theme(text = element_text(size = 15),
plot.title = element_text(colour = "red",
size = 18,
hjust = 0.5,
vjust = 0.8,
angle = 0),
plot.subtitle = element_text(colour = "blue",
size = 16,
hjust = 0.5,
vjust = 0.8,
angle = 0)
) +
theme(legend.position = "none")
list(plot1 = plot1, S = S)
}
ui <- fluidPage(
theme = shinythemes::shinytheme("slate"),
h2("Comparing Many Career Batting Trajectories"),
column(3,
sliderInput("midyear", "Select Range of Mid Season:",
1900, 2020,
value = c(1980, 1985), sep = ""),
sliderInput("minpa", "Select Minimum Career PA:",
1000, 12000, 9000, sep = ""),
radioButtons("type",
"Select Measure:",
c("AVG", "HR Rate", "wOBA", "RC",
"SO Rate", "BB Rate"),
inline = TRUE),
radioButtons("xvar",
"Plot Against:",
c("year", "age"),
inline = TRUE),
radioButtons("hof",
"Hall of Fame?",
c("no", "yes"),
inline = TRUE),
downloadButton("downloadData", "Download Data"),
),
column(9,
plotOutput("plot1",
height = '500px'))
)
server <- function(input, output, session) {
options(warn=-1)
output$plot1 <- renderPlot({
compare_plot2(input$midyear, input$minpa,
input$type, input$xvar,
input$hof,
fg)$plot1
}, res = 96)
output$downloadData <- downloadHandler(
filename = "trajectory_output.csv",
content = function(file) {
out <- compare_plot2(input$midyear, input$minpa,
input$type, input$xvar,
input$hof, fg)
out$S$MidYearLo <- input$midyear[1]
out$S$MidYearHi <- input$midyear[2]
out$S$MinPA <- input$minpa
out$S$HOF <- input$hof
write.csv(out$S, file, row.names = FALSE)
}
)
}
shinyApp(ui = ui, server = server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.