library(dplyr)
library(ggplot2)
library(Lahman)
library(geomtextpath)
# data is read from the Lahman package
selectPlayers <- function(midYearRange, minGames,
position){
require(Lahman)
Fielding %>%
filter(POS == position) %>%
group_by(playerID) %>%
summarize(minYear = min(yearID),
maxYear = max(yearID),
midYear = (minYear + maxYear) / 2,
Innings = sum(InnOuts / 3, na.rm = TRUE),
G = sum(G),
.groups = "drop") %>%
filter(midYear <= midYearRange[2],
midYear >= midYearRange[1],
G >= minGames) %>%
select(playerID) %>%
inner_join(People, by = "playerID") %>%
mutate(Name = paste(nameFirst, nameLast)) %>%
select(playerID, Name)
}
compare_plot <- function(playerid_1, playerid_2,
measure, xvar, position){
require(Lahman)
if((length(playerid_1) > 0) &
(length(playerid_2) > 0)){
# collect names of two players
Name1 <- filter(People, playerID == playerid_1) %>%
mutate(Name = paste(nameFirst, nameLast)) %>%
select(Name) %>% pull()
Name2 <- filter(People, playerID == playerid_2) %>%
mutate(Name = paste(nameFirst, nameLast)) %>%
select(Name) %>% pull()
# collect fielding stats for two players for each season
Fielding %>%
filter(POS == position) %>%
filter(playerID %in% c(playerid_1, playerid_2)) %>%
inner_join(select(People, playerID,
nameFirst, nameLast),
by = "playerID") %>%
mutate(Name = paste(nameFirst, nameLast)) %>%
group_by(Name, yearID) %>%
summarize(Innings = sum(InnOuts / 3),
PO = sum(PO),
A = sum(A),
E = sum(E),
G = sum(G),
RF9 = 9 * (PO + A) / Innings,
RFG = (PO + A) / G,
FPct = (PO + A) / (PO + A + E),
.groups = "drop") -> S
# function to obtain birthyear for player
get_birthyear <- function(playerid) {
People %>%
filter(playerID == playerid) %>%
mutate(Name = paste(nameFirst, nameLast),
birthyear = ifelse(birthMonth >= 7,
birthYear + 1, birthYear)) %>%
select(Name, birthyear)
}
# collect birthyears and compute ages for each
# player and season
S1 <- rbind(get_birthyear(playerid_1),
get_birthyear(playerid_2))
inner_join(S, S1, by = "Name") %>%
mutate(Age = yearID - birthyear) -> S
# define outcome depending on input
if(measure == "RF/9"){
S$Outcome <- S$RF9
S$Weight <- S$G
YLAB <- "RF/9"
}
if(measure == "RF/G"){
S$Outcome <- S$RFG
S$Weight <- S$G
YLAB <- "RF/G"
}
if(measure == "Fld%"){
S$Outcome <- S$FPct
S$Weight <- S$G
YLAB <- "Fld%"
}
# plot versus season or age?
if(xvar == "year"){
S$XVAR <- S$yearID
XLAB <- "Season"
}
if(xvar == "age"){
S$XVAR <- S$Age
XLAB <- "Age"
}
plot1 <- ggplot(S,
aes(XVAR, Outcome, color = Name,
weight = Weight,
label = Name)) +
geom_point(size = 3) +
geom_textsmooth(se = FALSE,
method = "loess",
formula = "y ~ x") +
ylab(YLAB) +
xlab(XLAB) +
labs(title = paste(Name1, "and", Name2),
subtitle = paste(position,
YLAB, "Career Trajectories"),
color = "Player") +
theme(text = element_text(size = 15),
plot.title = element_text(colour = "red",
size = 18,
hjust = 0.5, vjust = 0.8, angle = 0),
plot.subtitle = element_text(colour = "blue",
size = 16,
hjust = 0.5, vjust = 0.8, angle = 0))
list(plot1 = plot1, S = S)
}
}
ui <- fluidPage(
theme = shinythemes::shinytheme("slate"),
h2("Comparing Career Fielding Trajectories"),
column(3,
selectInput("position",
"Select Position:",
choices = c("SS", "2B", "OF", "C",
"1B", "3B", "P")),
sliderInput("midyear", "Select Range of Mid Season:",
1900, 2020,
value = c(1975, 1985), sep = ""),
sliderInput("minInnings",
"Select Minimum Career Games:",
500, 2000, 1000, sep = ""),
selectInput("player_name1",
"Select First Player:",
choices =
selectPlayers(c(1975, 1985),
2000, "SS")$Name),
selectInput("player_name2",
"Select Second Player:",
choices =
selectPlayers(c(1975, 1985),
2000, "SS")$Name),
radioButtons("type",
"Select Measure:",
c("Fld%", "RF/9", "RF/G"),
inline = TRUE),
radioButtons("xvar",
"Plot Against:",
c("year", "age"),
inline = TRUE),
downloadButton("downloadData", "Download Data")
),
column(9,
plotOutput("plot1",
height = '500px'))
)
server <- function(input, output, session) {
options(warn=-1)
observeEvent(input$midyear, {
updateSelectInput(inputId = "player_name1",
choices =
selectPlayers(input$midyear,
input$minInnings,
input$position)$Name)
})
observeEvent(input$minInnings, {
updateSelectInput(inputId = "player_name1",
choices =
selectPlayers(input$midyear,
input$minInnings,
input$position)$Name)
})
observeEvent(input$position, {
updateSelectInput(inputId = "player_name1",
choices =
selectPlayers(input$midyear,
input$minInnings,
input$position)$Name)
})
observeEvent(input$midyear, {
updateSelectInput(inputId = "player_name2",
choices =
selectPlayers(input$midyear,
input$minInnings,
input$position)$Name)
})
observeEvent(input$minInnings, {
updateSelectInput(inputId = "player_name2",
choices =
selectPlayers(input$midyear,
input$minInnings,
input$position)$Name)
observeEvent(input$position, {
updateSelectInput(inputId = "player_name2",
choices =
selectPlayers(input$midyear,
input$minInnings,
input$position)$Name)
})
})
output$plot1 <- renderPlot({
S <- selectPlayers(input$midyear,
input$minInnings,
input$position)
id1 <- filter(S,
Name == input$player_name1)$playerID
id2 <- filter(S,
Name == input$player_name2)$playerID
compare_plot(id1, id2, input$type, input$xvar,
input$position)$plot1
}, res = 96)
output$downloadData <- downloadHandler(
filename = "trajectory_output.csv",
content = function(file) {
S <- selectPlayers(input$midyear,
input$minInnings,
input$position)
id1 <- filter(S,
Name == input$player_name1)$playerID
id2 <- filter(S,
Name == input$player_name2)$playerID
out <- compare_plot(id1, id2, input$type,
input$xvar,
input$position)
write.csv(out$S, file, row.names = FALSE)
}
)
}
shinyApp(ui = ui, server = server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.