# smsvm = function(x = NULL, y, valid_x = NULL, valid_y = NULL, nfolds = 5,
# lambda_seq = 2^{seq(-10, 10, length.out = 100)}, lambda_theta_seq = 2^{seq(-10, 10, length.out = 100)},
# kernel = c("linear", "gaussian", "poly", "spline", "anova_gaussian"), kparam = c(1),
# scale = TRUE, criterion = c("0-1", "loss"), isCombined = TRUE, nCores = 1, ...)
# {
# out = list()
# cat("Fit c-step \n")
# cstep_fit = cstep.smsvm(x = x, y = y, valid_x = valid_x, valid_y = valid_y, nfolds = nfolds,
# lambda_seq = lambda_seq, theta = NULL,
# kernel = kernel, kparam = kparam, scale = scale, criterion = criterion, optModel = FALSE, nCores = nCores, ...)
#
# cat("Fit theta-step \n")
# thetastep_fit = thetastep.smsvm(cstep_fit, lambda_theta_seq = lambda_theta_seq, isCombined = isCombined, nCores = nCores, ...)
#
# cat("Fit c-step \n")
# opt_cstep_fit = cstep.smsvm(x = x, y = y, valid_x = valid_x, valid_y = valid_y, nfolds = nfolds,
# lambda_seq = lambda_seq, theta = thetastep_fit$opt_theta,
# kernel = kernel, kparam = kparam, scale = scale, criterion = criterion, optModel = TRUE, nCores = nCores, ...)
#
# out$opt_param = opt_cstep_fit$opt_param
# out$opt_valid_err = opt_cstep_fit$opt_valid_err
# out$cstep_valid_err = opt_cstep_fit$valid_err
# out$theta_valid_err = thetastep_fit$valid_err
# out$opt_model = opt_cstep_fit$opt_model
# out$kernel = kernel
# out$kparam = opt_cstep_fit$opt_param["kparam"]
# out$opt_theta = thetastep_fit$opt_theta
# out$theta = thetastep_fit$theta
# out$x = x
# out$y = y
# out$n_class = opt_cstep_fit$n_class
# class(out) = "smsvm"
# return(out)
# }
#
# predict.smlapsvm = function(object, newx = NULL, newK = NULL)
# {
# model = object$opt_model
# cmat = model$cmat
# c0vec = model$c0vec
# levs = model$levels
#
# # if (object$scale) {
# # newx = (newx - matrix(object$center, nrow = nrow(newx), ncol = ncol(newx), byrow = TRUE)) / matrix(object$scaled, nrow = nrow(newx), ncol = ncol(newx), byrow = TRUE)
# # }
#
# if (is.null(newK)) {
# new_anova_K = make_anovaKernel(newx, object$x, kernel = object$kernel, kparam = object$kparam)
# newK = combine_kernel(new_anova_K, theta = object$opt_theta)
# # newK = kernelMatrix(newx, rbind(object$x, object$ux), kernel = object$kernel, kparam = object$kparam)
# # newK = kernelMatrix(rbfdot(sigma = object$kparam), newx, object$x)
# }
#
# pred_y = (matrix(rep(c0vec, nrow(newK)), ncol = model$n_class, byrow = T) + (newK %*% cmat))
# pred_class = levs[apply(pred_y, 1, which.max)]
#
# if (attr(levs, "type") == "factor") {pred_class = factor(pred_class, levels = levs)}
# if (attr(levs, "type") == "numeric") {pred_class = as.numeric(pred_class)}
# if (attr(levs, "type") == "integer") {pred_class = as.integer(pred_class)}
#
# return(list(class = pred_class, pred_value = pred_y))
# }
cstep.smsvm = function(x, y, valid_x = NULL, valid_y = NULL, nfolds = 5,
lambda_seq = 2^{seq(-10, 10, length.out = 100)}, theta = NULL,
kernel = c("linear", "gaussian", "poly", "spline", "anova_gaussian"), kparam = c(1),
scale = FALSE, criterion = c("0-1", "loss"), optModel = FALSE, nCores = 1, ...)
{
call = match.call()
kernel = match.arg(kernel)
criterion = match.arg(criterion)
out = list()
p = ncol(x)
lambda_seq = as.numeric(lambda_seq)
kparam = as.numeric(kparam)
if (is.null(theta)) {
theta = rep(1, p)
}
lambda_seq = sort(lambda_seq, decreasing = FALSE)
kparam = sort(kparam, decreasing = FALSE)
# Combination of hyper-parameters
if (!is.null(valid_x) & !is.null(valid_y)) {
model_list = vector("list", 1)
fold_list = NULL
n = NROW(x)
center = rep(0, p)
scaled = rep(1, p)
if (scale) {
x = scale(x)
center = attr(x, "scaled:center")
scaled = attr(x, "scaled:scale")
}
valid_err_mat = matrix(NA, nrow = length(kparam), ncol = length(lambda_seq))
for (i in 1:length(kparam)) {
par = kparam[i]
anova_K = make_anovaKernel(x, x, kernel = kernel, kparam = par)
K = combine_kernel(anova_K, theta)
valid_anova_K = make_anovaKernel(valid_x, x, kernel = kernel, kparam = par)
valid_K = combine_kernel(anova_kernel = valid_anova_K, theta = theta)
# Parallel computation on the combination of hyper-parameters
fold_err = mclapply(1:length(lambda_seq),
function(j) {
error = try({
msvm_fit = msvm_compact(K = K, y = y, lambda = lambda_seq[j], ...)
})
if (!inherits(error, "try-error")) {
pred_val = predict.msvm_compact(msvm_fit, newK = valid_K)$class
if (criterion == "0-1") {
acc = sum(valid_y == pred_val) / length(valid_y)
err = 1 - acc
} else {
# err = ramsvm_hinge(valid_y, pred_val$inner_prod, k = k, gamma = gamma)
}
} else {
msvm_fit = NULL
err = Inf
}
return(list(error = err, fit_model = msvm_fit))
}, mc.cores = nCores)
valid_err = sapply(fold_err, "[[", "error")
# model_list[[1]] = lapply(fold_err, "[[", "fit_model")
valid_err_mat[i, ] = valid_err
}
opt_ind = which(valid_err_mat == min(valid_err_mat), arr.ind = TRUE)
opt_ind = opt_ind[order(opt_ind[, 1], opt_ind[, 2], decreasing = c(FALSE, TRUE))[1], ]
opt_param = c(lambda = lambda_seq[opt_ind[2]], kparam = kparam[opt_ind[1]])
opt_valid_err = min(valid_err_mat)
}
out$opt_param = opt_param
out$opt_valid_err = opt_valid_err
out$opt_ind = opt_ind
out$valid_err = valid_err
out$x = x
out$y = y
out$theta = theta
out$valid_x = valid_x
out$valid_y = valid_y
out$kernel = kernel
out$kparam = opt_param["kparam"]
out$scale = scale
out$criterion = criterion
if (optModel) {
anova_K = make_anovaKernel(x, x, kernel = kernel, kparam = opt_param["kparam"])
K = combine_kernel(anova_K, theta)
opt_model = msvm_compact(K = K, y = y, lambda = opt_param["lambda"], ...)
out$opt_model = opt_model
}
out$call = call
class(out) = "smsvm"
return(out)
}
thetastep.smsvm = function(object, lambda_theta_seq = 2^{seq(-10, 10, length.out = 100)}, isCombined = TRUE,
optModel = FALSE, nCores = 1, ...)
{
call = match.call()
out = list()
lambda_theta_seq = sort(as.numeric(lambda_theta_seq), decreasing = FALSE)
lambda = object$opt_param["lambda"]
criterion = object$criterion
kernel = object$kernel
kparam = object$opt_param["kparam"]
n_class = object$n_class
x = object$x
y = object$y
theta = object$theta
valid_x = object$valid_x
valid_y = object$valid_y
anova_K = make_anovaKernel(x, x, kernel = kernel, kparam = kparam)
valid_anova_K = make_anovaKernel(valid_x, x, kernel = kernel, kparam = kparam)
if (is.null(object$opt_model)) {
K = combine_kernel(anova_K, theta)
opt_model = msvm_compact(K = K, y = y, lambda = lambda, ...)
} else {
opt_model = object$opt_model
}
init_model = opt_model
fold_err = mclapply(1:length(lambda_theta_seq),
function(j) {
error = try({
theta = find_theta.smsvm(y = y, anova_kernel = anova_K, cmat = init_model$cmat, c0vec = init_model$c0vec,
lambda = lambda, lambda_theta = lambda_theta_seq[j], ...)
if (isCombined) {
subK = combine_kernel(anova_K, theta)
init_model = msvm_compact(K = subK, y = y, lambda = lambda, ...)
}
})
if (!inherits(error, "try-error")) {
valid_subK = combine_kernel(valid_anova_K, theta)
pred_val = predict.msvm_compact(init_model, newK = valid_subK)$class
if (criterion == "0-1") {
acc = sum(valid_y == pred_val) / length(valid_y)
err = 1 - acc
} else {
# err = ramsvm_hinge(valid_y, pred_val$inner_prod, k = k, gamma = gamma)
}
} else {
err = Inf
theta = rep(0, anova_K$numK)
}
return(list(error = err, theta = theta))
}, mc.cores = nCores)
valid_err = sapply(fold_err, "[[", "error")
theta_seq = sapply(fold_err, "[[", "theta")
opt_ind = max(which(valid_err == min(valid_err)))
opt_lambda_theta = lambda_theta_seq[opt_ind]
opt_theta = theta_seq[, opt_ind]
opt_valid_err = min(valid_err)
out$opt_lambda_theta = opt_lambda_theta
out$opt_ind = opt_ind
out$opt_theta = opt_theta
out$theta_seq = theta_seq
out$opt_valid_err = opt_valid_err
out$valid_err = valid_err
if (optModel) {
optK = combine_kernel(anova_K, opt_theta)
opt_model = msvm_compact(K = optK, y = y, lambda = lambda, ...)
} else {
opt_model = init_model
}
out$opt_model = opt_model
class(out) = "smsvm"
return(out)
}
find_theta.smsvm = function(y, anova_kernel, cmat, c0vec, lambda, lambda_theta, eig_tol_D = 0, epsilon_D = 1e-8)
{
if (anova_kernel$numK == 1)
{
cat("Only one kernel", "\n")
return(c(1))
}
if (lambda_theta <= 0) {
theta = rep(1, anova_kernel$numK)
return(theta)
}
y_temp = factor(y)
levs = levels(y_temp)
attr(levs, "type") = class(y)
y_int = as.integer(y_temp)
n_class = length(levs)
# standard LP form :
# min a^T x , subject to A1x <= a1
n = length(y_int)
# c0vec = as.matrix(c0vec)
# convert y into msvm class code
trans_Y = class_code(y_int, n_class)
# calculate the 'a' matrix
a = matrix(trans_Y, ncol = 1)
a[a == 1] = 0
a[a < 0] = 1 / n
# indices for the nonzero elements
nonzeroIndex = matrix((a != 0), ncol = 1)
a = as.matrix(a[nonzeroIndex])
# initialize M
M = matrix(rep(0, anova_kernel$numK), ncol = 1)
# calculate M
for (d in 1:anova_kernel$numK) {
for (j in 1:n_class) {
M[d] = (M[d] + t(cmat[, j]) %*% anova_kernel$K[[d]] %*% cmat[, j])
}
M[d] = (lambda / 2 * M[d] + (lambda_theta))
}
a = rbind(a, M)
# calculate N matrix
for (d in 1:anova_kernel$numK) {
K = anova_kernel$K[[d]]
for (j in 1:n_class) {
if (j == 1) {
temp_N = K %*% cmat[, j]
} else {
temp_N = rbind(temp_N, K %*% cmat[, j])
}
}
if(d == 1) {
N = temp_N
} else {
N = cbind(N, temp_N)
}
}
# constraints
n_nonzeroIndex = sum(as.numeric(nonzeroIndex))
# A matrix
I_nonzeroIndex = diag(1, n_nonzeroIndex)
N_nonzeroIndex = as.matrix(N[nonzeroIndex, ])
A_theta = cbind(matrix(0, anova_kernel$numK, n_nonzeroIndex),
diag(-1, anova_kernel$numK))
A_ineq = rbind(cbind(I_nonzeroIndex, -N_nonzeroIndex), A_theta)
b_t1 = matrix(rep(1, n), ncol = 1) %x% t(c0vec)
b_t2 = matrix(b_t1 - trans_Y, ncol = 1)
b_nonzeroIndex = b_t2[nonzeroIndex]
b_ineq = rbind(as.matrix(b_nonzeroIndex), matrix(-1, anova_kernel$numK, 1))
# constraint directions
const_dir = matrix(rep(">=", nrow(matrix(b_ineq))))
# find solution by LP
lp = lp("min", objective.in = a, const.mat = A_ineq, const.dir = const_dir,
const.rhs = b_ineq)$solution
# find the theta vector only from the solution
theta = cbind(matrix(0, anova_kernel$numK, n_nonzeroIndex),
diag(1, anova_kernel$numK)) %*% matrix(lp, ncol = 1)
return(as.vector(theta))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.