# Copyright 2022 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot days above normal, below normal and normal for a specific year
#'
#' @description Plots an annual hydrograph for a specific year with daily flow values coloured by whether the daily values are normal,
#' above normal, or below normal, overlaying the normals range. The normal range is typically between 25 and 75th percentiles for
#' each day of the year. Upper and lower-range percentiles are calculated for each day of the year of from all years, and then each
#' daily flow value for each year is compared. Normals calculated from only years of complete data, although incomplete years can be
#' plotted. Shows the annual values for a specific year from the counts from the \code{plot_annual_normal_days()} function.
#' Returns a list of plots.
#'
#' @inheritParams calc_daily_stats
#' @inheritParams plot_annual_stats
#' @inheritParams calc_annual_normal_days
#' @param year_to_plot Numeric value indicating the year/water year to plot flow data with normal category colours. Default \code{NA}.
#' @param plot_flow_line Logical value indicating whether to connect flow data coloured points with lines. Default \code{TRUE}.
#' @param plot_normal_percentiles Logical value indicating whether to plot the normal percentiles ribbon. Default \code{TRUE}.
#'
#' @return A list of ggplot2 objects with the following for each station provided:
#' \item{Annual_Normal_Days_Year}{a plot that contains the above, below, and normal colour daily flow points}
#'
#' @seealso \code{\link{calc_annual_normal_days}}
#' @seealso \code{\link{plot_annual_normal_days}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot the year 2000 using a data frame and data argument with defaults
#' flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
#' plot_annual_normal_days_year(data = flow_data,
#' year_to_plot = 2000)
#'
#' # Plot the year 2000 using the station_number argument
#' plot_annual_normal_days_year(station_number = "08NM116",
#' year_to_plot = 2000)
#'
#' # Plot the year 2000 and change the normal percentiles range
#' plot_annual_normal_days_year(station_number = "08NM116",
#' normal_percentiles = c(20,80),
#' year_to_plot = 2000)
#'
#' }
#' @export
plot_annual_normal_days_year <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
normal_percentiles = c(25,75),
year_to_plot = NA,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
log_discharge = TRUE,
log_ticks = FALSE,
include_title = FALSE,
plot_flow_line = TRUE,
plot_normal_percentiles = TRUE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
roll_days <- roll_days[1]
logical_arg_check(log_discharge)
log_ticks_checks(log_ticks, log_discharge)
logical_arg_check(include_title)
logical_arg_check(plot_flow_line)
logical_arg_check(plot_normal_percentiles)
numeric_range_checks(normal_percentiles)
sort(normal_percentiles)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
origin_date <- get_origin_date(water_year_start)
## CALC STATS
## ----------
# Get flow data for a specific years
flow_data_year <- add_date_variables(flow_data, water_year_start = water_year_start)
flow_data_year <- add_rolling_means(flow_data_year, roll_days = roll_days, roll_align = roll_align)
flow_data_year <- dplyr::rename(flow_data_year, Orig_Value = Value)
names(flow_data_year)[names(flow_data_year) == paste0("Q", roll_days, "Day")] <- "Value"
flow_data_year <- dplyr::filter(flow_data_year, WaterYear == year_to_plot)
flow_data_year <- dplyr::select(flow_data_year, STATION_NUMBER, Flow_Date = Date, DayofYear, Value)
# Get daily normal percentiles
daily_stats <- suppressMessages(
calc_daily_stats(data = flow_data,
percentiles = normal_percentiles,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
complete_years = TRUE,
months = months))
names(daily_stats)[names(daily_stats) == paste0("P",min(normal_percentiles))] <- "MIN"
names(daily_stats)[names(daily_stats) == paste0("P",max(normal_percentiles))] <- "MAX"
# determine normality of annual points against percentiles
daily_stats <- dplyr::mutate(daily_stats, Date = as.Date(DayofYear, origin = origin_date))
daily_stats <- dplyr::mutate(daily_stats, AnalysisDate = Date)
daily_stats <- dplyr::left_join(daily_stats, flow_data_year, by = c("STATION_NUMBER", "DayofYear"))
daily_stats <- dplyr::mutate(daily_stats,
Normal = dplyr::case_when(Value < MIN ~ "Below Normal",
Value > MAX ~ "Above Normal",
TRUE ~ "Normal"),
Normal = factor(Normal, levels = c("Above Normal","Normal","Below Normal")))
if (all(sapply(daily_stats[4:ncol(daily_stats)], function(x)all(is.na(x))))) {
daily_stats[is.na(daily_stats)] <- 1
}
daily_stats <- fill_missing_dates(daily_stats, water_year_start = water_year_start)
daily_stats <- add_date_variables(daily_stats, water_year_start = water_year_start)
daily_stats <- dplyr::select(daily_stats, -c("CalendarYear", "Month", "MonthName", "WaterYear"))
## PLOT STATS
## ----------
# Create axis label based on input columns
y_axis_title <- ifelse(as.character(substitute(values)) == "Volume_m3", "Volume (cubic metres)", #expression(Volume~(m^3))
ifelse(as.character(substitute(values)) == "Yield_mm", "Yield (mm)",
"Discharge (cms)")) #expression(Discharge~(m^3/s))
# Create colours for legend
colour_list <- c("Above Normal","Normal","Below Normal")
if (plot_normal_percentiles) {
names <- paste0("Historic Daily\nP",normal_percentiles[1],"-P",normal_percentiles[2])
fils <- stats::setNames(c(scales::viridis_pal()(length(colour_list)),"lightblue2"),#
c(colour_list, names))
shp <- c(21, 21, 21, 22)
colors <- c("black", "black" ,"black", "lightblue2")
} else {
fils <- stats::setNames(c(scales::viridis_pal()(length(colour_list))),#
c(colour_list))
shp <- c(21, 21, 21)
colors <- c("black", "black" ,"black")
}
disch_name <- ifelse(roll_days == 1, "Daily Discharge",
paste0(roll_days, "-Day Discharge"))
# Create the daily stats plots
daily_plots <- dplyr::group_by(daily_stats, STATION_NUMBER)
daily_plots <- tidyr::nest(daily_plots)
daily_plots <- dplyr::mutate(
daily_plots,
plot = purrr::map2(
data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Date)) +
{if(plot_normal_percentiles) ggplot2::geom_ribbon(ggplot2::aes_string(ymin = "MIN", ymax = "MAX"),
alpha = 0.3, colour = "lightblue2" ,fill = "lightblue2", na.rm = FALSE) } +
ggplot2::geom_line(ggplot2::aes(y = Value, colour = disch_name), size = 0.2, na.rm = TRUE) +
ggplot2::geom_point(ggplot2::aes(y = Value, fill = Normal), size = 3, shape = 21, colour = "black") +
{if(!log_discharge) ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, 0.05)),
breaks = scales::pretty_breaks(n = 8),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))}+
{if(log_discharge) ggplot2::scale_y_log10(breaks = scales::log_breaks(n = 8, base = 10),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))} +
{if(log_discharge & log_ticks) ggplot2::annotation_logticks(base = 10, "left", colour = "grey25", size = 0.3,
short = ggplot2::unit(.07, "cm"), mid = ggplot2::unit(.15, "cm"),
long = ggplot2::unit(.2, "cm"))} +
ggplot2::scale_x_date(date_labels = "%b", date_breaks = "1 month",
limits = as.Date(c(as.character(min(daily_stats$AnalysisDate, na.rm = TRUE)),
as.character(max(daily_stats$AnalysisDate, na.rm = TRUE)))),
expand = c(0,0)) +
ggplot2::scale_fill_manual(values = fils,
name = paste0("Normal Category\nfor ",
ifelse(water_year_start == 1,"Year ","Water Year "),
year_to_plot ),
limits = names(fils)) +
ggplot2::scale_colour_manual(values = stats::setNames("#264b96", disch_name), name = NULL,
limits = names(stats::setNames("#264b96", disch_name)))+
ggplot2::guides(fill = ggplot2::guide_legend(override.aes = list(shape = shp, colour = colors),
order = 1) )+
ggplot2::xlab("Day of Year") +
ggplot2::ylab(y_axis_title) +
{if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } +
ggplot2::theme_bw() +
ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "grey25"),
axis.title = ggplot2::element_text(size = 12, colour = "grey25"),
axis.ticks = ggplot2::element_line(size = .1, colour = "grey25"),
axis.ticks.length = ggplot2::unit(0.05, "cm"),
axis.title.y = ggplot2::element_text(margin = ggplot2::margin(0,0,0,0)),
panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_line(size = .1),
legend.text = ggplot2::element_text(size = 9, colour = "grey25"),
legend.key.size = ggplot2::unit(0.4, "cm"),
legend.spacing = ggplot2::unit(-0.4, "cm"),
legend.background = ggplot2::element_blank())
))
# Create a list of named plots extracted from the tibble
plots <- daily_plots$plot
if (nrow(daily_plots) == 1) {
names(plots) <- "Annual_Normal_Days_Year"
} else {
names(plots) <- paste0(daily_plots$STATION_NUMBER, "_Annual_Normal_Days_Year")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.