Description Usage Arguments Details Value See Also Examples
ramp obtains the ramp response of the linear system:
dx/dt = Ax + Bu
y = Cx + Du
| 1 2 | 
| sys | LTI system of transfer-function, state-space and zero-pole classes | 
| t | Time vector. If not provided, it is automatically set. | 
| input | For calls to  For calls to  | 
ramp produces the ramp response of linear systems using lsim
rampplot produces the ramp response as a plot against time.
These functions can handle both SISO and MIMO (state-space) models.
#' Other possible calls using ramp and rampplot are:
ramp(sys)
ranp(sys, t)
rampplot(sys)
rampplot(sys, t)
A list is returned by calling ramp containing:
t Time vector
x Individual response of each x variable
y Response of the system
The matrix y has as many rows as there are outputs, and columns of the same size of length(t).
The matrix x has as many rows as there are states.  If the time
vector is not specified, then the automatically set time
vector is returned as t
A plot of y vs t is returned by calling rampplot
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | res <- ramp(tf(1, c(1,2,1)))
res$y
res$t
ramp(tf(1, c(1,2,1)), seq(0, 6, 0.1))
rampplot(tf(1, c(1,2,1)))
rampplot(tf(1, c(1,2,1)), seq(0, 6, 0.1))
## Not run:  State-space MIMO systems 
A <- rbind(c(0,1), c(-25,-4)); B <- rbind(c(1,1), c(0,1));
C <- rbind(c(1,0), c(0,1)); D <- rbind(c(0,0), c(0,0))
res1 <- ramp(ss(A,B,C,D), input = 1)
res2 <- ramp(ss(A,B,C,D), input = 2)
res1$y # has two rows, i.e. for two outputs
res2$y # has two rows, i.e. for two outputs
rampplot(ss(A,B,C,D), input = 1:2) # OR
rampplot(ss(A,B,C,D), input = 1:ncol(D))
rampplot(ss(A,B,C,D), seq(0,3,0.01), 1:2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.