predatoR
is a tool for mutation impact prediction based on network
properties.
predatoR()
function is the wrapper function of predatoR
package.
predatoR()
works on each PDB respectively. For each PDB;
You can install the predatoR via devtools:
library(devtools)
install_github("berkgurdamar/predatoR")
Mutation impact prediction can be done via predatoR()
function:
predatoR()
uses data.frame structures as an input. data.frame should
consist of ‘PDB_ID’, ‘Chain’, ‘Position’, ‘Orig_AA’,
‘Mut_AA’ and ‘Gene_Name’ (optional). Predictions can be made by
using 2 different models, 5 Angstrom (Å)-all atoms model and 7Å-carbon
alpha (Cα) atoms only model.
| PDB_ID | Chain | Position | Orig_AA | Mut_AA | Gene_Name | |:------:|:-----:|:--------:|:-------:|:------:|:---------:| | 3SQJ | A | 196 | GLN | LEU | ALB | | 3SQJ | A | 396 | GLU | LYS | ALB |
predatoR()
can work with input which has partially included gene
names.
library(predatoR)
# Gene name included
input_df <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU", "ALB"),
c("3SQJ", "A", 396, "GLU", "LYS", "ALB")))
pred_res <- predatoR(info_df = input_df, n_threads = 8, gene_name_info = TRUE)
# Gene name not included
input_df <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU"),
c("3SQJ", "A", 396, "GLU", "LYS")))
pred_res <- predatoR(info_df = input_df, n_threads = 8, gene_name_info = FALSE)
# Partially included gene names
input_df <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU", "ALB"),
c("3SQJ", "A", 396, "GLU", "LYS", "")))
pred_res <- predatoR(info_df = input_df, n_threads = 8, gene_name_info = TRUE)
predatoR()
function returns a data.frame which contains additional two
columns; ‘Prediction’ and ‘Probability’. ‘Prediction’
represents the result of the impact prediction and ‘Probability’
represents the probability that the mutation classified as
Pathogenic or Neutral.
| PDB_ID | Chain | Position | Orig_AA | Mut_AA | Gene_Name | Prediction | Probability | |:------:|:-----:|:--------:|:-------:|:------:|:---------:|:----------:|:-----------:| | 3SQJ | A | 196 | GLN | LEU | ALB | Neutral | 0.6521832 | | 3SQJ | A | 396 | GLU | LYS | ALB | Neutral | 0.6009792 |
Network properties can be calculated by using different distance
cutoffs. In this approach, predatoR()
does not make any prediction
about the mutation, but returns a data frame contains all 24 features
annotated to the dataset. Both network formalisation approaches also can
be used.
# networks build using all atoms and 7.6Å cutoff
prediction_result <- predatoR(input_df, distance_cutoff = 7.6, network_approach = "all")
# networks build using only Cα atoms and 8Å cutoff
prediction_result <- predatoR(input_df, distance_cutoff = 8, network_approach = "ca")
The wrapper function predatoR()
uses the utility functions below;
read_PDB()
PDB2connections()
degree_score()
eigen_centrality_score()
shorteset_path_score()
betweenness_score()
clique_score()
pagerank_score()
gnomad_scores()
BLOSUM62_score()
KEGG_pathway_number()
genic_intolerance()
GO_terms()
DisGeNET()
gene_essentiality()
GTEx()
amino_acid_features()
impact_prediction()
Utility functions can be used alone, for more detail please see vignette
via vignette("predatoR_Vignette")
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.