Description Usage Arguments Value Examples
This function computes the pageRanks for the genes based on the input personalization vectors constructed from experimental data.
1 | computePageRanks(personalizationVectors, PPIGraph, alpha)
|
personalizationVectors |
A data frame with two columns npv - normal personalization vector and dpv - disease personalization vector. There are as many rows as number of HGNC Symbols in experimentData |
PPIGraph |
PPIGraph PPIGraph A list containing igraph_object - the
igraph object and vertex_map - a frame containing node attributes currently
indegree and outdegree. The output of |
alpha |
The damping factor |
A data frame with two columns containing the normal page rank and the disease page rank. There are as many rows as number of HGNC Symbols in PPI Graph
1 2 3 4 5 6 7 8 9 10 11 | ## Not run:
gds = getGEO('GDS3837',AnnotGPL = TRUE, getGPL = TRUE,destdir = "/tmp")
gpl = getGEO(Meta(gds)$platform,destdir = "/tmp")
eset = GDS2eSet(gds, GPL=gpl,do.log2=FALSE)
numPairs = dim(pData(eset))[1]/2
expressionDataGEO=importExpressionDataGEO(eset,gpl,defaultProbeSelector,probeCombinerMean)
experimentDataGEO=runTestOnData(expressionDataGEO,1:60,61:120,logPairedTTestFunction)
personalizationVectorsGEO=computePersonalizationVectors(experimentDataGEO,reactomePPIGraph,data.frame(foldChange=1,pValue=1),outdegreeNormalizedFCOneMinusPScoreFunction)
pageRanksGEO=computePageRanks(personalizationVectorsGEO,reactomePPIGraph,0.7)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.