TrainCellTypist | R Documentation |
Train celltypist using the data in a seurat object and saves the resulting model
TrainCellTypist(
seuratObj,
labelField,
modelFile,
minCellsPerClass = 20,
assayName = Seurat::DefaultAssay(seuratObj),
tempFileLocation = NULL,
dropAmbiguousLabelValues = TRUE,
excludedClasses = NULL,
featureInclusionList = NULL,
featureExclusionList = NULL
)
seuratObj |
The seurat object |
labelField |
The field in seuratObj@meta.data holding the labels for training |
modelFile |
The path to save the model |
minCellsPerClass |
If provided, any classes (and corresponding cells) with fewer than this many cells will be dropped from the training data |
assayName |
The name of the assay to use |
tempFileLocation |
The location where temporary files (like the annData version of the seurat object), will be written. |
dropAmbiguousLabelValues |
If true, and label value with a comma will be dropped. |
excludedClasses |
A vector of labels to discard. |
featureInclusionList |
If provided, the input count matrix will be subset to just these features. If used, Seurat::NormalizeData will be re-run. |
featureExclusionList |
If provided, the input count matrix will be subset to remove these features. If used, Seurat::NormalizeData will be re-run. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.