knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "show/README-", warning = FALSE )
Install the latest version from GitHub as follow:
# Install if(!require(devtools)) install.packages("devtools") devtools::install_github("bioShaun/omplotr")
theme_onmath
is a ggplot theme used in almost all rnaseq plots.
library(omplotr) p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,colour = factor(gear))) p + theme_onmath() + ggtitle("theme_onmath")
functions to generate plot in ngs analysis
# Fastqc GC result head(gc_test_data, 4) # lineplot of GC distribution across Fastq file gc_line_plot(gc_test_data)
# Reads Quality result # Bars of Quality <= 30 were marked with color 'dodgerblue', # Bars of Quality > 30 were marked with color 'navy'. head(rq_test_data, 4) # Reads Quality barplot reads_quality_plot(rq_test_data)
# expression matrix head(exp_test_data, 4) # sample information head(test_sample_data, 4) # boxplot om_boxplot(exp_test_data, test_sample_data, 'box') # violin om_boxplot(exp_test_data, test_sample_data, 'violin') # density om_boxplot(exp_test_data, test_sample_data, 'density')
# merged plot om_boxplot(exp_test_data, test_sample_data, 'all')
om_pca_plot(exp_test_data, test_sample_data)
om_correlation_plot(exp_test_data, test_sample_data)
# diff result head(diff_test_data, 4) # plot volcano plot for a single compare om_volcano_plot(diff_test_data, 'Case_vs_Control')
# plot volcano plot for merged results om_volcano_plot(diff_test_data, 'ALL')
# plot expression heatmap om_heatmap(exp_test_data, test_sample_data)
# cluster result head(cluster_test_data, 4) # cluster plot om_cluster_plot(cluster_test_data)
# diff genes test_diff_genes <- go_test_data_list[['test_diff_genes']] head(test_diff_genes, 4) # gene length test_gene_len <- go_test_data_list[['test_gene_len']] head(test_gene_len, 4) # get go annotation file gene_go_map <- system.file("extdata", "topgo_test_data.txt", package = "omplotr") gene_go_map_df <- data.table::fread(gene_go_map, header = F) head(gene_go_map_df, 4) # run goseq and show result goseq_output <- om_goseq(test_diff_genes, test_gene_len, gene_go_map) head(goseq_output, 4) # go enrichment bar plot go_enrich_file <- system.file("extdata", "enrichment", "example.go.enrichment.txt", package = "omplotr") go_enrich_list <- clean_enrich_table(go_enrich_file) om_enrich_bar_plot(go_enrich_list$table, ylab_title=go_enrich_list$title)
# run topGO om_topgo(gene_go_map, test_diff_genes, goseq_output)
mapping_stats <- system.file("extdata", "all_sample.mapping.xls", package = "omplotr") # show mapping stats table mapping_df <- read.delim(mapping_stats) head(mapping_df, 4) # show mapping summary om_bwa_mapping_plot(mapping_stats, 5) # show detail sample information om_bwa_mapping_plot(mapping_stats, 10)
cov_stats <- system.file("extdata", "all_sample.genome.cov.xls", package = "omplotr") # show coverage table cov_df <- read.delim(cov_stats) head(cov_df, 4) # show coverage summary om_reads_cov_plot(cov_stats, 5, 100) # show detail sample information om_reads_cov_plot(cov_stats, 10, 100)
# transform variant summary data stats_names <- om_const_reseq_variant[['var_file_labs']][1:2] stats_dir <- system.file("extdata", "variant_stats", package = "omplotr") impact_map_file <- system.file("extdata", "variant_stats", "snpeff_varEffects.csv", package = "omplotr") test_pie_stats <- lapply(stats_names, om_var_pie_stats, stats_dir=stats_dir, impact_map_file=impact_map_file) head(test_pie_stats[[1]], 4) # plot pie plot for each sample a_om_test_var_stats <- dplyr::filter(om_test_var_stats[[1]], variable == 'A') om_var_pie_plot(a_om_test_var_stats)
# variant summary boxplot om_test_var_stats_df <- plyr::ldply(om_test_var_stats, data.frame) om_var_summary_plot(om_test_var_stats_df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.