#' Fuzzy Geographicaly Weighted Clustering with Artificial Bee Colony Optimization
#' @description Fuzzy clustering with addition of spatial configuration of membership matrix with centroid optimization using Artificial Bee Colony
#' @param data an object of data with d>1. Can be \code{matrix} or \code{data.frame}. If your data is univariate, bind it with \code{1} to get a 2 columns.
#' @param pop an n*1 vector contains population.
#' @param distmat an n*n distance matrix between regions.
#' @param ncluster an integer. The number of clusters.
#' @param m degree of fuzziness or fuzzifier. Default is 2.
#' @param distance the distance metric between data and centroid, the default is euclidean, see \code{\link[rdist]{cdist}} for details.
#' @param order, minkowski order. default is 2.
#' @param alpha the old membership effect with [0,1], if \code{alpha} equals 1, it will be same as fuzzy C-Means, if 0, it equals to neighborhood effect.
#' @param a spatial magnitude of distance. Default is 1.
#' @param b spatial magnitude of population. Default is 1.
#' @param max.iter maximum iteration. Default is 500.
#' @param error error tolerance. Default is 1e-5.
#' @param randomN random seed for initialisation (if uij or vi is NA). Default is 0.
#' @param vi.dist a string of centroid population distribution between \code{"uniform"} (default) and \code{"normal"}. Can be defined as \code{vi.dist=} in \code{opt_param}.
#' @param nfood number of foods population. Can be defined as \code{npar=} in \code{opt_param}.
#' @param n.onlooker number of onlooker bees, Can be defined as \code{n.onlooker} in \code{opt_param}.
#' @param limit number of turns to eliminate food with no solutions. Can be defined as \code{limit} in \code{opt_param}.
#' @param pso whether to add PSO term in bee's movement. Either \code{TRUE} or \code{FALSE}. Can be defined as \code{pso} in \code{opt_param}.
#' @param abc.same number of consecutive unchange to stop the iteration. Can be defined as \code{same=} in \code{opt_param}.
#' @return an object of class \code{"fgwc"}.\cr
#' An \code{"fgwc"} object contains as follows:
#' \itemize{
#' \item \code{converg} - the process convergence of objective function
#' \item \code{f_obj} - objective function value
#' \item \code{membership} - membership matrix
#' \item \code{centroid} - centroid matrix
#' \item \code{validation} - validation indices (there are partition coefficient (\code{PC}), classification entropy (\code{CE}),
#' SC index (\code{SC}), separation index (\code{SI}), Xie and Beni's index (\code{XB}), IFV index (\code{IFV}), and Kwon index (Kwon))
#' \item \code{max.iter} - Maximum iteration
#' \item \code{cluster} - the cluster of the data
#' \item \code{finaldata} - The final data (with the cluster)
#' \item \code{call} - the syntax called previously
#' \item \code{time} - computational time.
#' }
#' @details Fuzzy Geographically Weighted Clustering (FGWC) was developed by \insertCite{fgwc;textual}{naspaclust} by adding
#' neighborhood effects and population to configure the membership matrix in Fuzzy C-Means. Furthermore,
#' the Artificial Bee Colony (ABC) algorithm was developed by \insertCite{Karaboga2007;textual}{naspaclust} in order to get a more optimal
#' solution of a certain complex function. FGWC using ABC has been implemented previously by \insertCite{fgwcabc1;textual}{naspaclust} and \insertCite{fgwcabc2;textual}{naspaclust}.
#' @references
#' \insertAllCited{}
#' @seealso \code{\link{fpafgwc}} \code{\link{gsafgwc}}
#' @examples
#' data('census2010')
#' data('census2010dist')
#' data('census2010pop')
#' # First way
#' res1 <- abcfgwc(census2010,census2010pop,census2010dist,3,2,'euclidean',4,nfood=10)
#' # Second way
#' # initiate parameter
#' param_fgwc <- c(kind='v',ncluster=3,m=2,distance='minkowski',order=3,
#' alpha=0.5,a=1.2,b=1.2,max.iter=1000,error=1e-6,randomN=10)
#' ## tune the ABC parameter
#' abc_param <- c(vi.dist='normal',npar=5,pso=FALSE,same=15,n.onlooker=5,limit=5)
#' ##FGWC with ABC optimization algorithm
#' res2 <- fgwc(census2010,census2010pop,census2010dist,'abc',param_fgwc,abc_param)
#' @export
abcfgwc <- function(data, pop=NA, distmat=NA, ncluster=2, m=2, distance='euclidean', order=2, alpha=0.7, a=1, b=1,
error=1e-5, max.iter=100, randomN=0, vi.dist="uniform", nfood=10, n.onlooker=5, limit=4, pso=F, abc.same=10){
# require(beepr)
randomnn <- randomN
ptm<-proc.time()
n <- nrow(data)
d <- ncol(data)
iter=0
beta <- 1-alpha
same=0
data <- as.matrix(data)
if (alpha ==1) {
pop <- rep(1,n)
distmat <- matrix(1,n,n)
}
datax <- data
pop <- matrix(pop,ncol=1)
mi.mj <- pop%*%t(pop)
minmaxdata <- rbind(apply(data,2,min),apply(data,2,max))
food <- init.swarm(data, mi.mj, distmat, distance, order, vi.dist, ncluster,
m, alpha, a, b, randomN, nfood)
food.swarm <- food$centroid
food.other <- food$membership
food.fit <- food$I
food.finalpos <- food$centroid[[which.min(food.fit)]]
food.finalpos.other <- food$membership[[which.min(food.fit)]]
food.fit.finalbest <- food$I[[which.min(food.fit)]]
conv <- c(food.fit[which.min(food.fit)])
t <- rep(0,nfood)
repeat{
minmax <- c(which.min(food.fit)[1],which.max(food.fit)[1])
best <- minmax[1]
worst <- minmax[2]
candfood <- employed.bee(food.swarm,food.fit,pso,food.finalpos,randomN,data,m,distance,order,mi.mj,distmat,alpha,beta,a,b)
candfood.fit <- sapply(1:nfood, function(x) jfgwcv2(data,candfood[[x]],m,distance,order,mi.mj,distmat,alpha,beta,a,b))
newfood <- compare(candfood,food.swarm,candfood.fit,food.fit,t,data,m,distance,order,mi.mj,distmat,alpha,beta,a,b)
onlook.food <- onlooker.bee(newfood$swarm,newfood$fit,newfood$t,newfood$prob,n.onlooker,pso,food.finalpos,
randomN+1,data,m,distance,order,mi.mj,distmat,alpha,beta,a,b)
t <- onlook.food$t
food.swarm <- scout.bee(onlook.food$swarm,t,limit,minmaxdata,randomN+2)
food.other <- lapply(1:nfood, function(x) uij(data,food.swarm[[x]],m,distance,order))
food.other <- lapply(1:nfood, function(x) renew_uij(data,food.other[[x]]$u,mi.mj,distmat,alpha,beta,a,b))
food.swarm <- lapply(1:nfood, function(x) vi(data,food.other[[x]],m))
food.fit <- sapply(1:nfood, function(x) jfgwcv(data,food.swarm[[x]],m,distance,order))
best <- which(food.fit==min(food.fit))[1]
food.curbest <- food.swarm[[best]]
food.curbest.other <- food.other[[best]]
food.fit.curbest <- food.fit[best]
conv <- c(conv,food.fit.finalbest)
iter <- iter+1
if (abs(conv[iter+1]-conv[iter])<error) same <- same+1
else same <- 0
if (food.fit.curbest<=food.fit.finalbest) {
food.finalpos <- food.curbest
food.finalpos.other <- food.curbest.other
food.fit.finalbest <- food.fit.curbest
}
randomN <- randomN+nfood
if (iter==max.iter || same==abc.same) break
}
finaldata=determine_cluster(datax,food.finalpos.other)
cluster=finaldata[,ncol(finaldata)]
print(c(order, ncluster,m, randomN))
abc <- list("converg"=conv,"f_obj"=jfgwcv(data,food.finalpos,m,distance,order),"membership"=food.finalpos.other,"centroid"=food.finalpos,
"validation"=index_fgwc(data,cluster,food.finalpos.other,food.finalpos,m,exp(1)), "cluster"=cluster,
"finaldata"=finaldata, "call"=match.call(),"iteration"=iter,"same"=same,"time"=proc.time()-ptm)
return(abc)
}
employed.bee <- function(swarm,fitness,pso,gbest,seed,data,m,distance,order,mi.mj,dist,alpha,beta,a,b){
real <- 1:length(swarm)
set.seed(seed <- seed+2)
sample1 <- sample(1:length(swarm),length(swarm))
while(sum(real==sample1)!=0){
ind <- which(real==sample1)
set.seed(seed <- seed+1)
sample1[ind] <- sample(1:length(swarm),length(ind))
}
swarm <- lapply(1:length(swarm), function(x){
set.seed(seed+10+x)
phi <- matrix(runif(ncol(swarm[[x]])*nrow(swarm[[x]]),-1,1),ncol=ncol(swarm[[x]]))
a <- sample1[x]
psi <- 0
if(pso==TRUE){
set.seed(seed+10+x)
psi <- matrix(runif(ncol(swarm[[x]])*nrow(swarm[[x]]),0,1.5),ncol=ncol(swarm[[x]]))
}
swarm[[x]]+phi*(swarm[[x]]-swarm[[a]])+psi*(gbest-swarm[[x]])
})
return(swarm)
}
onlooker.bee <- function(swarm,fit,t,prob,n.onlooker,pso,gbest,seed,data,m,distance,order,mi.mj,dist,alpha,beta,a,b){
real <- order(prob,decreasing=T)[1:n.onlooker]
set.seed(seed <- seed+2)
sample1 <- sample(1:length(swarm),n.onlooker)
while(sum(real==sample1)!=0){
ind <- which(real==sample1)
set.seed(seed <- seed+1)
sample1[ind] <- sample(1:length(swarm),length(ind))
}
oldswarm <- lapply(real, function(x) swarm[[x]])
oldfit <- fit[real]
t2 <- t[real]
newswarm <- lapply(1:length(real), function(x){
set.seed(seed+10+x)
phi <- matrix(runif(ncol(swarm[[x]])*nrow(swarm[[x]]),-1,1),ncol=ncol(swarm[[x]]))
a <- sample1[x]
psi <- 0
if(pso==TRUE){
set.seed(seed+10+x)
psi <- matrix(runif(ncol(oldswarm[[x]])*nrow(oldswarm[[x]]),0,1.5),ncol=ncol(oldswarm[[x]]))
}
oldswarm[[x]]+phi*(oldswarm[[x]]-swarm[[a]])+psi*(gbest-oldswarm[[x]])
})
newfit <- sapply(1:length(newswarm),function(x) jfgwcv2(data,newswarm[[x]],m,distance,order,mi.mj,dist,alpha,beta,a,b))
swarmlast <- compare(newswarm,oldswarm,newfit,oldfit,t2,data,m,distance,order,mi.mj,dist,alpha,beta,a,b)
j = 0
for(i in real){
j <- j+1
swarm[[i]] <- swarmlast$swarm[[j]]
fit[i] <- swarmlast$fit[j]
t[i] <- swarmlast$t[j]
}
return(list(swarm=swarm,fit=fit,t=t))
}
scout.bee <- function(swarm,t,limit,minmaxdata,seed){
ind <- which(t==limit)
for(i in ind){
set.seed(seed <- seed+5+i)
r <- matrix(runif(ncol(swarm[[i]])*nrow(swarm[[i]])),ncol=ncol(swarm[[i]]))
swarm[[i]] <- minmaxdata[1,]+r*(minmaxdata[2,]-minmaxdata[1,])
}
return(swarm)
}
compare <- function(newswarm,oldswarm,newfit,oldfit,t,data,m,distance,order,mi.mj,dist,alpha,beta,a,b){
ind <- which(newfit<oldfit)
for(i in ind){
oldswarm[[i]] <- newswarm[[i]]
oldfit[i] <- newfit[i]
t[i] <- 0
}
t[-ind] <- t[-ind]+1
obj <- sapply(1:length(oldswarm),function(x) jfgwcv2(data,oldswarm[[x]],m,distance,order,mi.mj,dist,alpha,beta,a,b))
prob <- (1/obj)/sum(1/obj)
return(list(swarm=oldswarm,fit=obj,prob=prob,t=t))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.