R/iModel-testadd.R

#####################################################################
##
## Test addition of 'edge' to model 'object'
##
## If new model is decomposable and edge is in one clique only, then
## degrees of freedom are adjusted for sparsity
##
#####################################################################

#' Test addition of edge to graphical model
#' 
#' Performs a test of addition of an edge to a graphical model (an
#' \code{iModel} object).
#' 
#' Let M0 be the model and e={u,v} be an edge and let M1 be the model obtained
#' by adding e to M0. If M1 is decomposable AND e is contained in one clique C
#' only of M1 then the test is carried out in the C-marginal model. In this
#' case, and if the model is a log-linear model then the degrees of freedom is
#' adjusted for sparsity.
#' 
#' @aliases testadd testadd.iModel print.testadd testadd.mModel
#' @param object A model; an object of class \code{iModel}.
#' @param edge An edge; either as a vector or as a right hand sided formula.
#' @param k Penalty parameter used when calculating change in AIC
#' @param details The amount of details to be printed; 0 surpresses all
#'     information
#' @param \dots Further arguments to be passed on to the underlying functions
#'     for testing; that is to CItable and CImvn
#' @return A list
#' @author Søren Højsgaard, \email{sorenh@@math.aau.dk}
#' @seealso \code{\link{testdelete}}
#' @keywords models htest
#' @examples
#' 
#' ## ## ## testadd
#' ## ## ## 
#' 
#' ## ## Discrete model
#' ## ## 
#' data(reinis)
#' ## A decomposable model
#' ##
#' mf <- ~smoke:phys:mental + smoke:systol:mental
#' object <- dmod(mf, data=reinis)
#' testadd(object,c("systol","phys"))
#' 
#' 
#' ## A non-decomposable model
#' ##
#' mf <- ~smoke:phys + phys:mental + smoke:systol + systol:mental
#' object <- dmod(mf, data=reinis)
#' testadd(object, c("phys", "systol"))
#' 
#' 
#' ## ## Continuous model
#' ## ## 
#' data(math)
#' ## A decomposable model
#' ##
#' mf <- ~me:ve:al + al:an
#' object <- cmod(mf, data=math)
#' testadd(object, c("me", "an"))
#' 
#' ## A non-decomposable model
#' ##
#' mf <- ~me:ve + ve:al + al:an + an:me
#' object <- cmod(mf, data=math)
#' testadd(object, c("me", "al"))
#' 
#' @export testadd
#' 
testadd <- function(object, edge, k=2, details=1,...)
  UseMethod("testadd")

testadd.iModel <- function(object, edge, k=2, details=1, ...){

    model.type <- class(object)[1]
    ##cat(sprintf("testadd.iModel model.type=%s\n", model.type))
    
    edge <- rhsFormula2list(edge)[[1]]
    if (length(edge)!=2)
        stop(paste("Not a valid edge: ", paste(edge, collapse=":"), " \n"))


    ## ----- START USING amat
    if (is.null((amat <- list(...)$amat)))
        amat <- glist2adjMAT(object$glist)

    ## Is edge is in model? stop if not
    if (!subsetof(edge, colnames(amat)))
        stop(cat("variables:", edge, "not in model\n"))
    if (amat[edge[1],edge[2]]!=0)
        stop(cat("edge:", edge, "already in model\n"))

    ## Add edge to model FIXME: Fails if amat is sparse!
    amat[edge[1], edge[2]] <- amat[edge[2], edge[1]] <- 1L

    ## Is model graphical?
    cliq <- maxCliqueMAT(amat)$maxCliques
    isgraph <- length(cliq) == length(object$glist)
    
    ## Is model decomposable?
    isdecomp <- length(mcsMAT(amat)) > 0
    ## ----- STOP USING amat
    
    ## Is edge only in one clique in decomposable model?
    onlyinone <- FALSE
    if (isdecomp){
        idx   <- isin (cliq, edge, index=TRUE)
        onlyinone <- sum(idx) == 1
    }

  if (isdecomp && onlyinone && model.type %in% c("cModel","dModel")){
    ## If edge is in one clique only, do test in marginal table
    ##
    hostcq <- cliq[idx==1][[1]]
    set <- c(edge, setdiffPrim(hostcq, edge))

      ans <- switch(model.type,
                    "cModel"={ 
                        ciTest_mvn(list(cov=getmi(object, "S"),
                                        n.obs=getmi(object, "n")),
                                   set=set, ...)
                    },
                    "dModel"={
                        ciTest_table(getmi(object, "data"),
                                     set=set, ...)
                    })
            
      extra <- list(edge=edge, hostcq=hostcq, details=details, conmethod='data.based')
  } else {
    ## Make usual LR-test
    ##
    ob2   <- update(object, list(add.edge=edge))
    ans   <- .comparemodels(ob2,object)
    extra <- list(edge=edge, hostcq=NULL, details=details, conmethod='model.based')
  }
  extra2 <- list(aic=-(ans$statistic - k * ans$df), k=k)
  ret <- c(ans, extra, extra2)
  class(ret) <- "testadd"
  return(ret)
}


print.testadd <- function(x,  ...){

  cat(sprintf("dev: %8.3f df:%3i p.value: %7.5f AIC(k=%3.1f): %6.1f edge: %s \n",
              x$statistic, x$df, x$p.value, x$k, x$aic, .toString(x$edge,':')))
  if (x$conmethod=="data.based"){
    if (x$details > 0){
      cat("host: ", x$hostcq, "\n")
      cat("Notice: Test performed in saturated marginal model\n")
    }
  } else {
    if (x$details > 0){
      cat("Notice: Test perfomed by comparing likelihood ratios\n")
    }
  }
  return(invisible(x))
}
boennecd/gRim documentation built on May 12, 2019, 3:10 p.m.