# run_scRNAseq <- function(xx, k, projection = 'PCA',
# true_labels = NULL, centering_per_group = FALSE,
# parallel = FALSE, verbose = FALSE, ...){
#
# RunMethodsParallel(fid.data, methods.arr, isTCGA = FALSE, doCentre = FALSE,
# parallel=TRUE, verbose=FALSE)
# Purpose: run clustering methods on input data sets in parallel
# Note: parallelisation is over input data sets. Running this switches the
# optimisation of projection dimension (GGMM_a, RP_a) to serial. Thus,
# RunMethodsParallel() is only useful if the number of data sets is >10,
# otherwise, RunMethods() should be faster.
#
# Args:
# fid.data: data files (.rds) containing a list with data sets
# for a given scenario
# methods.arr: array of clustering method names to be used
# isTCGA: logical indicator whether input data is TCGA or not
# [default: isTCGA = FALSE]
# doCentre: indicator whether to centre data befor clustering
# [default = FALSE]
# parallel: logical, if true run in parallel
# [default: parallel = TRUE]
# verbose: logical, if true print process/computation information
# [default: verbose = FALSE]
#
# OUTPUT:
# results: adjusted Rand index for each method
library(mclust, quietly=TRUE)
library(nethet)
library(MCMCpack)
library(mvtnorm)
library(matrixcalc)
library(pcaMethods)
library(kernlab)
library(flexclust)
library(RandPro)
library(ggplot2)
library(doParallel)
library(huge)
library(tidyverse)
library(mcap)
source('./experiments/runExperiment_scRNAseq.R')
### preliminaries
rm_group_means <- FALSE #remove group means before clustering
run_parallel <- FALSE #run in parallel over multiple input files
verbose <- TRUE #print progress information
dir_out <- file.path(getwd(), 'experiments', 'results') #output directory
if(!dir.exists(dir_out)){ dir.create(dir_out) }
## data
fid_path <- '//fileserver.dzne.de/taschlerb/DZNE/data/MCAP/generated_data/'
fid_list <- list.files(fid_path)[1:80]
## select files to run
fid_run <- file.path(fid_path, fid_list[71:75])
fid_run <- file.path(fid_path, fid_list[c(41:45, 51:55, 71:75)]); rm_group_means=T
## select methods to use
methods_all <- c('mclust', 'mclust_k', 'mclust_r10', 'mclust_a',
'GGMM', 'GGMM_k', 'GGMM_r10', 'GGMM_a', 'GGMM_o',
'RP_k', 'RP_rn', 'RP_r10', 'RP_a', 'RP_o',
'RP_sparse_a', 'RP_verysparse_a',
'KM', 'KMPP', 'hclust', 'specc', 'mixGLasso')
methods_run <- c('RP_sparse_a', 'RP_verysparse_a')
### run experiment
results <- runExperiment_scRNAseq(fid_data = fid_run,
methods_arr = methods_run,
dir_out = dir_out,
doCentre = rm_group_means,
parallel = run_parallel, verbose = verbose)
closeAllConnections()
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.