Description Usage Arguments Value Examples
Takes data.frame from mbecPCA and produces a ggplot2 object.
1 | mbecPCAPlot(plot.df, metric.df, model.vars, pca.axes)
|
plot.df |
Data.frame containing principal component data. |
metric.df |
Data.frame containing covariate data. |
model.vars |
two covariates of interest to select by first variable selects panels and second one determines coloring. |
pca.axes |
NMumerical two-piece vector that selects PCs to plot. |
ggplot2 object
1 2 3 4 5 6 | # This will return a paneled plot that shows results for the variance
# assessment.
pca.df <- mbecPCA(input.obj=dummy.mbec,
model.vars=c('group','batch'), pca.axes=c(1,2), return.data=TRUE)
plot.pca <- mbecPCAPlot(plot.df=pca.df[[1]], metric.df=pca.df[[2]],
model.vars=c('group','batch'), pca.axes=c(1,2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.