## $Id: future.R,v 1.0 2002/12/11 yandell@stat.wisc.edu Exp $
##
## Functions for Bland Ewing's modeling.
##
## Copyright (C) 2000,2001,2002 Brian S. Yandell.
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## These functions are distributed in the hope that they will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## The text of the GNU General Public License, version 2, is available
## as http://www.gnu.org/copyleft or by writing to the Free Software
## Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
##
###############################################################################
##
## future.events( community )
##
###############################################################################
###############################################################################
### Get birth and future event
###############################################################################
get.future <- function (community, species,
individuals = get.individual(community, species, id),
id = get.base(community, species))
{
## NOTE: This is the slow routine. For every event, it has to check if there
## is a mean value function and then call rspline.
## the structure future.species is set up to handle competing risks!
future <- getOrgFuture(community, species, c("current", "future", "time"))
future$fid <- match(future$future, future$current)
individuals <- as.matrix(individuals)
rownames <- dimnames(individuals)[[1]]
for (i in seq(ncol(individuals))) {
individual <- individuals[,i]
current <- individual["stage"]
individual["location"] <- individual["time"]
## competing risks based on potential future event times
futures <- future$current == future$current[current]
times <- rep( individual["time"], sum( futures ))
cur <- seq(nrow(future))[futures]
for( j in seq( sum( futures ))) {
meantime <- future[cur[j], "time"]
if( meantime > 0 ) {
for.stage <- as.character(future$current[future$fid[ cur[j] ]])
times[j] <- rspline( meantime, individual,
getOrgMeanValue(community, species)[[for.stage]])
}
}
individual["time"] <- min( times )
current <- cur[ times == individual["time"] ][1]
individual["future"] <- future$fid[current]
if (individual["time"] == individual["rejection"])
individual["future"] <- future$fid[future$current == "death"]
individuals[,i] <- individual
}
individuals
}
###############################################################################
event.death <- function( community, species,
id = get.base( community, species ))
{
## remove dead individual from leftist tree
community <- put.species( community, species,
leftist.remove( get.species( community, species ), id ))
## free up individual for reuse
community <- put.base( community, species, id )
community
}
###############################################################################
update_mintime <- function( object, species, ... )
{
base <- get.base( object, species )
mintime <- max( getCount( object, species, "mintime" ),
getTime( object, species,
get.species.element( object, species, "time", base )))
setCount( object, species, list( base = base, mintime = mintime ))
}
###############################################################################
set.birth <- function( community, species, neworg )
{
## merge immediate new births (if any)
newbirths <- ncol( neworg )
if( newbirths > 0 ) {
neworg[c("dist","left","right","up"),] <- 1
community <- checkTime( community, neworg["time",],
getCount( community, species, "mintime" ),
getOrgFeature( community, species, "units" ))
oldbase <- getCount( community, species, "base" )
tmp <- leftist.birth( get.species( community, species ), neworg,
getCount( community, species, "free" ))
community <- put.species( community, species, tmp$tree )
community <- put.base( community, species, free = tmp$free )
community <- updateCounts( community, species, newbirths )
}
community
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.