celda_CG | R Documentation |
Clusters the rows and columns of a count matrix containing
single-cell data into L modules and K subpopulations, respectively. The
useAssay
assay slot in
altExpName
altExp slot will be used if
it exists. Otherwise, the useAssay
assay slot in x
will be used if
x
is a SingleCellExperiment object.
celda_CG(
x,
useAssay = "counts",
altExpName = "featureSubset",
sampleLabel = NULL,
K,
L,
alpha = 1,
beta = 1,
delta = 1,
gamma = 1,
algorithm = c("EM", "Gibbs"),
stopIter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
seed = 12345,
nchains = 3,
zInitialize = c("split", "random", "predefined"),
yInitialize = c("split", "random", "predefined"),
countChecksum = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = TRUE
)
## S4 method for signature 'SingleCellExperiment'
celda_CG(
x,
useAssay = "counts",
altExpName = "featureSubset",
sampleLabel = NULL,
K,
L,
alpha = 1,
beta = 1,
delta = 1,
gamma = 1,
algorithm = c("EM", "Gibbs"),
stopIter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
seed = 12345,
nchains = 3,
zInitialize = c("split", "random", "predefined"),
yInitialize = c("split", "random", "predefined"),
countChecksum = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = TRUE
)
## S4 method for signature 'ANY'
celda_CG(
x,
useAssay = "counts",
altExpName = "featureSubset",
sampleLabel = NULL,
K,
L,
alpha = 1,
beta = 1,
delta = 1,
gamma = 1,
algorithm = c("EM", "Gibbs"),
stopIter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
seed = 12345,
nchains = 3,
zInitialize = c("split", "random", "predefined"),
yInitialize = c("split", "random", "predefined"),
countChecksum = NULL,
zInit = NULL,
yInit = NULL,
logfile = NULL,
verbose = TRUE
)
x |
A SingleCellExperiment
with the matrix located in the assay slot under |
useAssay |
A string specifying the name of the assay slot to use. Default "counts". |
altExpName |
The name for the altExp slot to use. Default "featureSubset". |
sampleLabel |
Vector or factor. Denotes the sample label for each cell (column) in the count matrix. |
K |
Integer. Number of cell populations. |
L |
Integer. Number of feature modules. |
alpha |
Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell population in each sample. Default 1. |
beta |
Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature module in each cell population. Default 1. |
delta |
Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature in each module. Default 1. |
gamma |
Numeric. Concentration parameter for Eta. Adds a pseudocount to the number of features in each module. Default 1. |
algorithm |
String. Algorithm to use for clustering cell subpopulations. One of 'EM' or 'Gibbs'. The EM algorithm for cell clustering is faster, especially for larger numbers of cells. However, more chains may be required to ensure a good solution is found. Default 'EM'. |
stopIter |
Integer. Number of iterations without improvement in the log likelihood to stop inference. Default 10. |
maxIter |
Integer. Maximum number of iterations of Gibbs sampling to perform. Default 200. |
splitOnIter |
Integer. On every |
splitOnLast |
Integer. After |
seed |
Integer. Passed to with_seed. For reproducibility, a default value of 12345 is used. If NULL, no calls to with_seed are made. |
nchains |
Integer. Number of random cluster initializations. Default 3. |
zInitialize |
Chararacter. One of 'random', 'split', or 'predefined'.
With 'random', cells are randomly assigned to a populations. With 'split',
cells will be split into sqrt(K) populations and then each population will
be subsequently split into another sqrt(K) populations. With 'predefined',
values in |
yInitialize |
Character. One of 'random', 'split', or 'predefined'.
With 'random', features are randomly assigned to a modules. With 'split',
features will be split into sqrt(L) modules and then each module will be
subsequently split into another sqrt(L) modules. With 'predefined', values
in |
countChecksum |
Character. An MD5 checksum for the counts matrix. Default NULL. |
zInit |
Integer vector. Sets initial starting values of z. 'zInit' is only used when ‘zInitialize = ’predfined''. Default NULL. |
yInit |
Integer vector. Sets initial starting values of y. 'yInit' is only be used when 'yInitialize = "predefined"'. Default NULL. |
logfile |
Character. Messages will be redirected to a file named 'logfile'. If NULL, messages will be printed to stdout. Default NULL. |
verbose |
Logical. Whether to print log messages. Default TRUE. |
A SingleCellExperiment object. Function
parameter settings are stored in metadata
"celda_parameters"
in altExp slot.
In altExp slot,
columns celda_sample_label
and celda_cell_cluster
in
colData contain sample labels and celda cell
population clusters. Column celda_feature_module
in
rowData contains feature modules.
celda_G for feature clustering and celda_C for clustering cells. celdaGridSearch can be used to run multiple values of K/L and multiple chains in parallel.
data(celdaCGSim)
sce <- celda_CG(celdaCGSim$counts,
K = celdaCGSim$K,
L = celdaCGSim$L,
sampleLabel = celdaCGSim$sampleLabel,
nchains = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.