knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(lineaGT) library(magrittr)
The coverage dataset can be filtered calling the filter_dataset()
function.
data(cov.df.example) data(vaf.df.example)
cov.example.filt = cov.df.example %>% filter_dataset(min_cov=5, min_frac=0.05) cov.example.filt
x = fit( cov.df = cov.example.filt, vaf.df = vaf.df.example, steps = 500, # n_runs = 1, k_interval = c(5, 15), timepoints_to_int = unlist(list("t1"=60, "t2"=150)) )
Printing the fitted object information regarding the data:
lineages and timpoints present in the data,
number of integration sites,
number of inferred clones of ISs, estimated via model selection on the input range of number of clusters,
for each clone, the number of assigned ISs and the mean coverage, per timepoint and lineage.
data(x.example)
x.example
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.