#' Processing of a split object to get data ready to be used and fitted with
#' a `stacking_reg_3` (stacking of SVM models) regression model.
#'
#' @description
#' The function processes a split object (training + test sets), according to
#' the configuration set by the user. For instance, genomic information is
#' incorporated according to the option set by the user. A list of specific
#' environmental covariables to use can be provided.\cr
#'
#' Multiple recipes are created using the package `recipes` according to the
#' data source (genomic, environmental data).
#' These recipes specify additional preprocessing steps, such as standardization
#' based on the training set, with same transformations used on the test set.
#' Variables with null variance are removed. If year effect is included, it is
#' converted to dummy variables. \cr
#' Three recipes are created: one with only SNPs data, one with only
#' environmental data and one with PCs extracted from SNP data and ECs combined.
#' rec_G, rec_E and rec_GE will be fitted with a support vector regression model,
#' according to a type of kernel (linear, polynomial, rbf) which can be chosen
#' by the user. Predictions of these models will be combined in a stacked model
#' (see function [fit_cv_split.stacking_reg_3()]).
#' \cr
#'
#' @param split an object of class `split`.
#' A `split` object contains a training and test elements.
#'
#' @param trait \code{character} Name of the trait to predict. An ordinal trait
#' should be encoded as `integer`.
#'
#' @param geno \code{data.frame} It corresponds to a `geno` element
#' within an object of class `METData`.
#'
#' @param env_predictors \code{data.frame} It corresponds to the `env_data`
#' element within an object of class `METData`.
#'
#' @param info_environments \code{data.frame} It corresponds to the
#' `info_environments` element within an object of class `METData`.
#'
#' @param use_selected_markers A \code{Logical} indicating whether to use a
#' subset of markers identified via single-environment GWAS or based on the
#' table of marker effects obtained via Elastic Net as predictor variables,
#' when main genetic effects are modeled with principal components. \cr
#' If `use_selected_markers` is `TRUE`, the `SNPs` argument should be
#' provided.
#' \strong{For more details, see [select_markers()]}
#'
#' @param SNPs A \code{data.frame} with the genotype matrix (individuals in rows
#' and selected markers in columns) for SNPs selected via the
#' [select_markers()] function.
#' \strong{Optional argument, can remain as `NULL` if no single markers should
#' be incorporated as predictor variables in analyses based on PCA
#' decomposition.}
#'
#' @param include_env_predictors A \code{logical} indicating whether
#' environmental covariates characterizing each environment should be used in
#' predictions.
#'
#' @param list_env_predictors A \code{character} vector containing the names
#' of the environmental predictors which should be used in predictions.
#' \strong{By default `NULL`: all environmental predictors included in the
#' env_data table of the `METData` object will be used.}
#'
#' @param lat_lon_included \code{logical} indicates if longitude and latitude
#' data should be used as numeric predictors. Default is `FALSE`.
#'
#' @param year_included \code{logical} indicates if year factor should be used
#' as predictor variable. Default is `FALSE`.
#'
#' @return A `list` object of class `stacking_reg_3` with the following items:
#' \describe{
#' \item{training}{\code{data.frame} Training set after partial processing}
#' \item{test}{\code{data.frame} Test set after partial processing}
#' \item{rec_G}{A \code{recipe} object, specifying the remaining processing
#' steps which are implemented when a model is fitted on the training set
#' with a recipe. Data used are predictors corresponding to genomic data.}
#' \item{rec_E}{A \code{recipe} object, specifying the remaining processing
#' steps which are implemented when a model is fitted on the training set
#' with a recipe. Data used are predictors corresponding to enviornmental
#' predictors.}
#' }
#'
#' @references
#' \insertRef{wickham2019welcome}{learnMET}
#' \insertRef{tidymodels}{learnMET}
#'
#' @name stacking_reg_3
#' @export
new_stacking_reg_3 <- function(split = NULL,
trait = NULL,
geno = NULL,
env_predictors = NULL,
info_environments = NULL,
use_selected_markers = F,
SNPs = NULL,
include_env_predictors = T,
list_env_predictors = NULL,
lat_lon_included = F,
year_included = F,
...) {
if (class(split) != 'split') {
stop('Class of x should be "split".')
}
if (class(split[['training']][, trait]) %in% c('integer')) {
split[['training']][, trait] <-
as.numeric(split[['training']][, trait])
split[['test']][, trait] <- as.numeric(split[['test']][, trait])
}
geno = as.data.frame(geno)
geno$geno_ID = row.names(geno)
## SNPs DATA ##
# Add the genotype data
# Merge in same data.frame pheno and geno data for each train & test split
training <-
plyr::join(split[[1]], geno, by = 'geno_ID')
test <-
plyr::join(split[[2]], geno, by = 'geno_ID')
## ENVIRONMENTAL DATA ##
# Add the environmental data
if (include_env_predictors &
!is.null(list_env_predictors)) {
training <-
merge(training,
env_predictors[, c('IDenv', list_env_predictors)],
by = 'IDenv',
all.x = T)
test <-
merge(test,
env_predictors[, c('IDenv', list_env_predictors)],
by = 'IDenv',
all.x = T)
}
## ENVIRONMENTAL-BASED KERNEL ##
if (lat_lon_included &
year_included &
length(unique(as.character(training$year))) > 1) {
# Add longitude/latitude data for each train & test split
training <-
merge(training,
info_environments[, c('IDenv', 'longitude', 'latitude')],
by = 'IDenv',
all.x = T)
test <-
merge(test,
info_environments[, c('IDenv', 'longitude', 'latitude')],
by = 'IDenv',
all.x = T)
# Create recipe to define the processing of the training & test set.
rec_E <- recipes::recipe(~ . ,
data = training) %>%
recipes::update_role(tidyselect::all_of(trait), new_role = 'outcome') %>%
recipes::update_role(IDenv, new_role = "id variable") %>%
recipes::step_novel(year,location,geno_ID,IDenv) %>%
recipes::step_rm(any_of(colnames(geno))) %>%
recipes::step_rm(location) %>%
recipes::update_role(-tidyselect::all_of(trait),-IDenv, new_role = 'predictor') %>%
recipes::step_dummy(year, keep_original_cols = F, one_hot = TRUE) %>%
recipes::step_nzv(recipes::all_predictors()) %>%
recipes::step_normalize(recipes::all_numeric(),-recipes::all_outcomes())
} else if (!lat_lon_included &
year_included &
length(unique(as.character(training$year))) > 1) {
# Create recipe to define the processing of the training & test set.
rec_E <- recipes::recipe(~ . ,
data = training) %>%
recipes::update_role(tidyselect::all_of(trait), new_role = 'outcome') %>%
recipes::update_role(IDenv, new_role = "id variable") %>%
recipes::step_novel(year,location,geno_ID,IDenv) %>%
recipes::step_rm(any_of(colnames(geno))) %>%
recipes::step_rm(location) %>%
recipes::update_role(-tidyselect::all_of(trait),-IDenv, new_role = 'predictor') %>%
recipes::step_dummy(year, keep_original_cols = F, one_hot = TRUE) %>%
recipes::step_nzv(recipes::all_predictors()) %>%
recipes::step_normalize(recipes::all_numeric(),-recipes::all_outcomes())
} else if ((lat_lon_included &
!year_included) | (lat_lon_included &
length(unique(as.character(training$year))) <
2)) {
# Add longitude/latitude data for each train & test split
training <-
merge(training,
info_environments[, c('IDenv', 'longitude', 'latitude')],
by = 'IDenv',
all.x = T)
test <-
merge(test,
info_environments[, c('IDenv', 'longitude', 'latitude')],
by = 'IDenv',
all.x = T)
# Create recipe to define the processing of the training & test set.
rec_E <- recipes::recipe(~ . ,
data = training) %>%
recipes::update_role(tidyselect::all_of(trait), new_role = 'outcome') %>%
recipes::update_role(IDenv, new_role = "id variable") %>%
recipes::step_novel(year,location,geno_ID,IDenv) %>%
recipes::step_rm(all_of(colnames(geno))) %>%
recipes::step_rm(location) %>%
recipes::step_rm(year) %>%
recipes::update_role(-tidyselect::all_of(trait),-IDenv, new_role = 'predictor') %>%
recipes::step_nzv(recipes::all_predictors()) %>%
recipes::step_normalize(recipes::all_numeric(),-recipes::all_outcomes())
} else{
# Create recipe to define the processing of the training & test set.
rec_E <- recipes::recipe(~ . ,
data = training) %>%
recipes::update_role(tidyselect::all_of(trait), new_role = 'outcome') %>%
recipes::update_role(IDenv, new_role = "id variable") %>%
recipes::step_novel(year,location,geno_ID,IDenv) %>%
recipes::step_rm(all_of(colnames(geno))) %>%
recipes::step_rm(location) %>%
recipes::step_rm(year) %>%
recipes::update_role(-tidyselect::all_of(trait),-IDenv, new_role = 'predictor') %>%
recipes::step_nzv(recipes::all_predictors()) %>%
recipes::step_normalize(recipes::all_numeric(),-recipes::all_outcomes())
}
cat('Processing: recipe for the environmental-based kernel created!\n')
## GENOMIC BASED KERNEL ##
rec_G <- recipes::recipe(~ . ,
data = training) %>%
recipes::update_role(tidyselect::all_of(trait), new_role = 'outcome') %>%
recipes::update_role(IDenv, new_role = "id variable") %>%
recipes::update_role(geno_ID, new_role = "id variable") %>%
recipes::step_novel(year,location,geno_ID,IDenv) %>%
recipes::step_rm(location) %>%
recipes::step_rm(year) %>%
recipes::step_rm(all_of(list_env_predictors)) %>%
recipes::update_role(-tidyselect::all_of(trait),-IDenv,-geno_ID, new_role = 'predictor') %>%
recipes::step_nzv(recipes::all_predictors()) %>%
#recipes::step_corr(recipes::all_predictors(),
# skip = TRUE,
# threshold = 0.95) %>%
recipes::step_normalize(recipes::all_numeric(),-recipes::all_outcomes())
prepped_G <- recipes::prep(rec_G)
G_train<- recipes::bake(prepped_G,new_data = training)
list_genomic_predictors <- colnames(G_train)[colnames(G_train)%in%colnames(geno)[which(colnames(geno)!='geno_ID')]]
cat('Processing: recipe for the genomic-based kernel created!\n')
## ECs + PC based on SNPs, in boosted trees model ##
# Use of genotypic data: use of PCs derived from additive geno matrix #
cat('Start creating recipes with xgb kernel with ECs and PCs\n')
rec_ge <- recipes::recipe(~ . ,
data = training) %>%
recipes::update_role(tidyselect::all_of(trait), new_role = 'outcome') %>%
recipes::update_role(IDenv, new_role = "id variable") %>%
recipes::update_role(geno_ID, new_role = "id variable") %>%
recipes::step_novel(year,location,geno_ID,IDenv) %>%
recipes::step_rm(location) %>%
recipes::step_rm(year) %>%
recipes::step_nzv(recipes::all_predictors()) %>%
recipes::step_pca(recipes::all_predictors(),-any_of(list_env_predictors),
num_comp = 40,
options = list(center = T, scale. = T)) %>%
recipes::update_role(-tidyselect::all_of(trait),-IDenv,-geno_ID, new_role = 'predictor') %>%
#recipes::step_corr(recipes::all_predictors(),
# skip = TRUE,
# threshold = 0.95) %>%
recipes::step_normalize(recipes::all_numeric(),-recipes::all_outcomes(),-starts_with('PC'))
prepped_ge <- recipes::prep(rec_ge)
GE_train<- recipes::bake(prepped_ge,new_data = training)
cat('Processing: recipe for the PCs x ECs model created!\n')
split_processed <- structure(list(
'training' = training,
'test' = test,
'rec_G' = rec_G,
'rec_E' = rec_E,
'rec_GE' = rec_ge
),
class = 'stacking_reg_3')
return(split_processed)
}
#' @rdname stacking_reg_3
#' @aliases new_stacking_reg_3
#' @export
stacking_reg_3 <- function(split,
trait,
geno,
env_predictors,
info_environments,
use_selected_markers,
SNPs,
list_env_predictors,
include_env_predictors,
lat_lon_included,
year_included,
...) {
validate_stacking_reg_3(
new_stacking_reg_3(
split=split,
trait=trait,
geno=geno,
env_predictors = env_predictors,
info_environments = info_environments,
use_selected_markers=use_selected_markers,
SNPs=SNPs,
list_env_predictors=list_env_predictors,
include_env_predictors=include_env_predictors,
lat_lon_included=lat_lon_included,
year_included=year_included,
...
)
)
}
#' @rdname stacking_reg_3
#' @aliases new_stacking_reg_3
#' @export
validate_stacking_reg_3 <- function(x,...) {
trait <-
as.character(x[['rec_G']]$term_info[which(x[['rec_G']]$term_info[, 3] == 'outcome'), 'variable'])
checkmate::assert_class(x, 'stacking_reg_3')
checkmate::assert_names(names(x),
must.include = c('training', 'test', 'rec_G', 'rec_E','rec_GE'))
checkmate::assert_class(x[['training']][, trait], 'numeric')
return(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.