#' @title MPS estimation of the left-truncated GEV distribution
#' @description Apply MPS estimation to the left-truncated GEV distribution
#' @param data Empirical data that is left-truncated
#' @param init_value The initial value of left-truncated Generalised Extreme Value(GEV) distributions parameter xi and sigma
#' @param u The left truncated point
#'
#' @return a \code{list} contains the estimation result of shape and scale parameters, standard error, and covariance matrix of estimated parameters.
#' @export
#' @importFrom stats optim
#' @importFrom evir pgev
#' @importFrom evir dgev
#' @examples
#' data0=rgev(30000,xi=0.5,mu=4,sigma=2)
#' data = data0[data0>5]
#' fit = gev_LTMPS(data = data,init_value = c(0.6,2.2),u=5)
#' fit$par.ests
gev_LTMPS = function(data,init_value,u){
dat = sort(data,decreasing = T)
n=length(dat)
u=u
#MPS estimation function
opt_gev<- function(par){
xi=par[1];sigma=par[2]
est = -sum(log(c(1,exp(-((1+xi*(dat-sigma/xi)/sigma)^(-1/xi))))-
exp(-((1+xi*(c(dat,u)-sigma/xi)/sigma)^(-1/xi)))))+
(n+1)*log(1-exp(-((1+xi*(u-sigma/xi)/sigma)^(-1/xi))))
return(est)
}
fit = optim(init_value,opt_gev,hessian = T)
#result
par.ests <- fit$par
varcov <- solve(fit$hessian)
par.ses <- sqrt(diag(varcov))
out <- list(n = n, par.ests = par.ests, par.ses = par.ses, varcov = varcov,
converged = fit$convergence, nllh.final = fit$value)
names(out$par.ests) <- c("xi", "sigma")
names(out$par.ses) <- c("xi", "sigma")
class(out) <- "ltgev"
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.