#' @title MLE of the left-truncated log-normal distribution
#' @description Apply MLE to the left-truncated log-normal distribution.
#' @param data Empirical data that is left-truncated.
#' @param init_value The initial value of left-truncated log-normal distributions parameter mu and sigma.
#' @param u The left-truncated point.
#' @import stats
#' @return A \code{list} contains the estimation result of mu and sigma parameters, standard error and covariance matrix of estimated parameters.
#' @export
#'
#' @examples
#' data0=rlnorm(30000,4,2)
#' data = data0[data0>5]
#' fit = lgnorm_LTMLE(data = data,init_value = c(0.6,2.2),u=5)
#' fit$par.ests
lgnorm_LTMLE<- function(data,init_value,u){
dat = sort(data,decreasing = T)
n=length(dat)
u=u
#MPS estimation function
opt_lgnorm <- function(par){
mu=par[1];sigma=exp(par[2])
est = -sum(log(dlnorm(dat,mu,sigma)))+
n*log(1-plnorm(u,mu,sigma))
return(est)
}
fit <- optim(c(init_value[1],log(init_value[2])),opt_lgnorm,hessian = T)
#result
par.ests <- c(fit$par[1],exp(fit$par[2]))
varcov <- diag(c(1,exp(fit$par[2])))%*%solve(fit$hessian)%*%diag(c(1,exp(fit$par[2])))
par.ses <- sqrt(diag(varcov))
out <- list(n = n, par.ests = par.ests, par.ses = par.ses, varcov = varcov,
converged = fit$convergence, nllh.final = fit$value)
names(out$par.ests) <- c("mu","sigma")
names(out$par.ses) <- c("mu","sigma")
class(out) <- "ltlognormal"
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.