rm(list=ls())
library(usethis)
library(oce)
library(csasAtlPhys)
plot <- TRUE
# the gully coordinates
# obtained from cruise planning documents
# head and mouth are GULD respectively and west and east shelf are SG respectively
lon <- c(-59, -59.02, -58.9, -58.73)
lat <- c(43.71, 44, 43.79, 43.86)
names <- c('SG_28', 'GULD_03', 'GULD_04', 'SG_23')
a <- getTransectAngle(longitude = lon[c(2,3)], latitude = lat[c(2,3)])
angle <- a$angle
a2 <- getTransectAngle(longitude = lon[c(1,4)], latitude = lat[c(1,4)])
angle2 <- a2$angle
# 1. Find new start and end points
# between head and mouth
startlon <- lon[2]
startlat <- lat[2]
endlon <- lon[3]
endlat <- lat[3]
zone <- lonlat2utm(longitude = startlon,
latitude = startlat)$zone
startutm <- lonlat2utm(longitude = startlon,
latitude = startlat, zone = zone)
endutm <- lonlat2utm(longitude = endlon,
latitude = endlat,
zone = zone)
#utm output in m, so do calc in m
dist <- 8 * 1000
angleadj <- 45 + 0:3 * 90
eastingadj <- cos(angleadj * pi/180)
northingadj <- sin(angleadj * pi/180)
ptnorthing <- dist * eastingadj
pteasting <- dist * northingadj
pteastingrotate <- pteasting * cos(angle * pi/180) - ptnorthing * sin(angle * pi/180)
ptnorthingrotate <- pteasting * sin(angle * pi/180) + ptnorthing * cos(angle * pi/180)
# use index 3,4 from head and mouth for final polygon
head <- utm2lonlat(easting = startutm$easting + pteastingrotate,
northing = startutm$northing + ptnorthingrotate,
zone = zone)
mouth <- utm2lonlat(easting = endutm$easting + pteastingrotate,
northing = endutm$northing + ptnorthingrotate,
zone = zone)
## leg 2
# 1. Find new start and end points
startlon <- lon[1] #endlonlat$longitude
startlat <- lat[1] #endlonlat$latitude
endlon <- lon[4]
endlat <- lat[4]
zone <- lonlat2utm(longitude = startlon,
latitude = startlat)$zone
startutm <- lonlat2utm(longitude = startlon,
latitude = startlat, zone = zone)
endutm <- lonlat2utm(longitude = endlon,
latitude = endlat,
zone = zone)
#utm output in m, so do calc in m
dist <- 8 * 1000
# use the same pteasting and ptnorthing as leg 1
pteastingrotate <- pteasting * cos(angle2 * pi/180) - ptnorthing * sin(angle2 * pi/180)
ptnorthingrotate <- pteasting * sin(angle2 * pi/180) + ptnorthing * cos(angle2 * pi/180)
west <- utm2lonlat(easting = startutm$easting + pteastingrotate,
northing = startutm$northing + ptnorthingrotate,
zone = zone)
east <- utm2lonlat(easting = endutm$easting + pteastingrotate,
northing = endutm$northing + ptnorthingrotate,
zone = zone)
polyx <- c(west$longitude[c(4,3)],
east$longitude[c(2,1)],
mouth$longitude[4],
head$longitude[c(4,3)],
mouth$longitude[3])
polyy <- c(west$latitude[c(4,3)],
east$latitude[c(2,1)],
mouth$latitude[4],
head$latitude[c(4,3)],
mouth$latitude[3])
theGullyPolygon <- list(longitude = polyx,
latitude = polyy)
usethis::use_data(theGullyPolygon, compress = 'xz', overwrite = TRUE)
# next calculate the station polygons using same methods as above.
dist <- NULL
for(i in c(1,3,4)){
stndist <- geodDist(longitude1 = lon[i], latitude1 = lat[i],
longitude2 = lon[(i+1)], latitude2 = lat[(i+1)])
dist <- c(dist, stndist)
}
distheight <- dist/2
distheight <- c(head(distheight,1), distheight, tail(distheight,1))
distheight[distheight > 8] <- 8
distwidth <- 8
distheight <- 7.8
distheight <- distheight * 1000
distwidth <- distwidth * 1000
stnpoly <- vector(mode = 'list', length = length(lon))
for(i in 1:length(lon)){
zone <- lonlat2utm(longitude = lon[i],
latitude = lat[i])$zone
ptutm <- lonlat2utm(longitude = lon[i],
latitude = lat[i],
zone = zone)
ang <- ifelse(i %in% c(1,4), angle2, angle)
angleadj <- 45 + 0:3 * 90
eastingadj <- cos(angleadj * pi/180)
northingadj <- sin(angleadj * pi/180)
ptnorthing <- distwidth * eastingadj
pteasting <- distheight * northingadj
pteastingrotate <- pteasting * cos(ang * pi/180) - ptnorthing * sin(ang * pi/180)
ptnorthingrotate <- pteasting * sin(ang * pi/180) + ptnorthing * cos(ang * pi/180)
cornerlonlat <- utm2lonlat(easting = ptutm$easting + pteastingrotate,
northing = ptutm$northing + ptnorthingrotate,
zone = zone)
stnpoly[[i]][['stationName']] <- names[i]
stnpoly[[i]][['longitude']] <- lon[i]
stnpoly[[i]][['latitude']] <- lat[i]
stnpoly[[i]][['polyLongitude']] <- cornerlonlat$longitude
stnpoly[[i]][['polyLatitude']] <- cornerlonlat$latitude
stnpoly[[i]][['transectName']] <- 'theGully'
}
theGullyStationPolygons <- stnpoly
usethis::use_data(theGullyStationPolygons, compress = 'xz', overwrite = TRUE)
# for debugging purposes to double check polygon and station polygons
if(plot){
library(ocedata)
data("coastlineWorldFine")
proj <- '+proj=merc'
fillcol <- 'lightgrey'
lonlim <- range(c(lon, polyx)) + c(-0.5, 0.5)
latlim <- range(c(lat, polyy)) + c(-0.5, 0.5)
#png('00_cabotStraitPolygon.png', width = 6, height = 4, unit = 'in', res = 200, pointsize = 12)
par(mar = c(3.5, 3.5, 1, 1))
mapPlot(coastlineWorldFine,
longitudelim = lonlim,
latitudelim = latlim,
col = fillcol,
proj = proj,
grid = c(2,1))
mapPoints(lon, lat, pch = 20, col = 'black')
#mapText(lon, lat, labels = names, pos = 3)
#mapPoints(startlon, startlat, col = 'red', pch = 20)
#mapPoints(endlon, endlat, col = 'red', pch = 20)
mapPolygon(polyx, polyy)
lapply(stnpoly, function(k) mapPolygon(k[['polyLongitude']], k[['polyLatitude']], border = 'red'))
#dev.off()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.