View source: R/model_multsbm.R
MultSbm | R Documentation |
An S4 class to represent a Multinomial Stochastic Block Model. Such model can be used to cluster multi-layer graph vertex, and model a square adjacency cube X of size NxNxM with the following generative model :
π \sim Dirichlet(α)
Z_i \sim \mathcal{M}(1,π)
θ_{kl} \sim Dirichlet(β)
X_{ij.}|Z_{ik}Z_{jl}=1 \sim \mathcal{M}(L_{ij},θ_{kl})
With L_{ij}=∑_{m=1}^MX_{ijm}. These classes mainly store the prior parameters value α,β of this generative model.
The MultSbm-class
must be used when fitting a simple MultSbm whereas the MultSbmPrior-class
must be sued when fitting a CombinedModels-class
.
MultSbmPrior(beta = 1, type = "guess") MultSbm(alpha = 1, beta = 1, type = "guess")
beta |
Dirichlet prior parameter over Multinomial links |
type |
define the type of networks (either "directed", "undirected" or "guess", default to "guess"), for undirected graphs the adjacency matrix is supposed to be symmetric. |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
a MultSbmPrior-class
object
a MultSbm-class
object
MultSbmFit-class
, MultSbmPath-class
Other DlvmModels:
CombinedModels
,
DcLbm
,
DcSbm
,
DiagGmm
,
DlvmPrior-class
,
Gmm
,
Lca
,
MoM
,
MoR
,
Sbm
,
greed()
MultSbmPrior() MultSbmPrior(type = "undirected") MultSbm() MultSbm(type = "undirected")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.