#' Asymmetric Laplace Distribution
#'
#' Density, cumulative distribution, quantile functions and random number
#' generation for the Asymmetric Laplace distribution with the
#' location parameter mu, scale and the asymmetry parameter alpha.
#'
#' When mu=0 and scale=1, the Laplace distribution becomes standardized.
#' The distribution has the following density function:
#'
#' f(x) = alpha (1-alpha) / scale exp(-(x-mu)/scale (alpha - I(x<=mu))),
#'
#' where I(.) is the indicator function (equal to 1 if the condition is
#' satisfied and zero otherwise).
#'
#' When alpha=0.5, then the distribution becomes Symmetric Laplace, where
#' scale = 1/2 MAE.
#'
#' This distribution function aligns with the quantile estimates of
#' parameters (Geraci & Bottai, 2007).
#'
#' Finally, both \code{palaplace} and \code{qalaplace} are returned for
#' the lower tail of the distribution.
#'
#' @template author
#' @keywords distribution
#'
#' @param q vector of quantiles.
#' @param p vector of probabilities.
#' @param n number of observations. Should be a single number.
#' @param mu vector of location parameters (means).
#' @param scale vector of scale parameters.
#' @param alpha value of asymmetry parameter. Varies from 0 to 1.
#' @param log if \code{TRUE}, then probabilities are returned in
#' logarithms.
#'
#' @return Depending on the function, various things are returned
#' (usually either vector or scalar):
#' \itemize{
#' \item \code{dalaplace} returns the density function value for the
#' provided parameters.
#' \item \code{palaplace} returns the value of the cumulative function
#' for the provided parameters.
#' \item \code{qalaplace} returns quantiles of the distribution. Depending
#' on what was provided in \code{p}, \code{mu} and \code{scale}, this
#' can be either a vector or a matrix, or an array.
#' \item \code{ralaplace} returns a vector of random variables
#' generated from the Laplace distribution. Depending on what was
#' provided in \code{mu} and \code{scale}, this can be either a vector
#' or a matrix or an array.
#' }
#'
#' @examples
#' x <- dalaplace(c(-100:100)/10, 0, 1, 0.2)
#' plot(x, type="l")
#'
#' x <- palaplace(c(-100:100)/10, 0, 1, 0.2)
#' plot(x, type="l")
#'
#' qalaplace(c(0.025,0.975), 0, c(1,2), c(0.2,0.3))
#'
#' x <- ralaplace(1000, 0, 1, 0.2)
#' hist(x)
#'
#' @references \itemize{
#' \item Geraci Marco, Bottai Matteo (2007). Quantile regression for
#' longitudinal data using the asymmetric Laplace distribution.
#' Biostatistics (2007), 8, 1, pp. 140-154
#' \doi{10.1093/biostatistics/kxj039}
#' \item Yu, K., & Zhang, J. (2005). A three-parameter asymmetric
#' laplace distribution and its extension. Communications in Statistics
#' - Theory and Methods, 34, 1867-1879.
#' \doi{10.1080/03610920500199018}
#' }
#'
#' @seealso \code{\link[greybox]{Distributions}}
#'
#' @rdname ALaplace
#' @export dalaplace
#' @aliases ALaplace dalaplace
dalaplace <- function(q, mu=0, scale=1, alpha=0.5, log=FALSE){
alaplaceReturn <- alpha * (1-alpha) / scale * exp(-(q-mu)/scale * (alpha - (q<=mu)*1));
if(log){
alaplaceReturn[] <- log(alaplaceReturn);
}
return(alaplaceReturn);
}
#' @rdname ALaplace
#' @export palaplace
#' @aliases palaplace
palaplace <- function(q, mu=0, scale=1, alpha=0.5){
Ie <- (q<=mu)*1;
alaplaceReturn <- 1 - Ie - (1 - Ie - alpha) * exp((Ie - alpha) / scale * (q-mu));
return(alaplaceReturn);
}
#' @rdname ALaplace
#' @export qalaplace
#' @aliases qalaplace
qalaplace <- function(p, mu=0, scale=1, alpha=0.5){
# p <- unique(p);
# mu <- unique(mu);
# scale <- unique(scale);
# alpha <- unique(alpha);
lengthMax <- max(length(p),length(mu),length(scale),length(alpha));
# If length of p, mu, scale and alpha differs, then go difficult. Otherwise do simple stuff
if(any(!c(length(p),length(mu),length(scale),length(alpha)) %in% c(lengthMax, 1))){
alaplaceReturn <- array(0,c(length(p),length(mu),length(scale),length(alpha)),
dimnames=list(paste0("p=",p),paste0("mu=",mu),paste0("scale=",scale),paste0("alpha=",alpha)));
alaplaceReturn[p==0.5,,,] <- 1;
alaplaceReturn[p==0,,,] <- -Inf;
alaplaceReturn[p==1,,,] <- Inf;
probsToEstimate <- which(alaplaceReturn[,1,1,1]==0);
alaplaceReturn[alaplaceReturn==1] <- 0;
for(k in 1:length(scale)){
for(i in 1:length(alpha)){
Ie <- (p[probsToEstimate]<=alpha[i])*1;
alaplaceReturn[probsToEstimate,,k,i] <- scale[k] / (Ie - alpha[i]) * log((1-Ie-p[probsToEstimate])/(1-Ie-alpha[i]));
}
}
alaplaceReturn <- alaplaceReturn + rep(mu,each=length(p));
# Drop the redundant dimensions
alaplaceReturn <- alaplaceReturn[,,,];
}
else{
Ie <- (p<=alpha)*1;
alaplaceReturn <- mu + scale / (Ie - alpha) * log((1-Ie-p)/(1-Ie-alpha));
if(any(p==0)){
alaplaceReturn[p==0] <- -Inf;
}
if(any(p==1)){
alaplaceReturn[p==1] <- Inf;
}
}
return(alaplaceReturn);
}
#' @rdname ALaplace
#' @export ralaplace
#' @aliases ralaplace
ralaplace <- function(n=1, mu=0, scale=1, alpha=0.5){
alaplaceReturn <- qalaplace(runif(n,0,1),mu,scale,alpha);
return(alaplaceReturn);
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.