.fit.param.fi.nbinom <- function(counting, i, kmax, cens.beg, cens.end) {
# Estimation of the parameters of the distribution (No censoring case)
xbar <- sum(0:(kmax - 1) * counting$Nik[i, ]) / sum(counting$Nik[i, ])
s2 <- (1 / (sum(counting$Nik[i, ]) - 1)) * sum(counting$Nik[i, ] * (0:(kmax - 1) - xbar) ^ 2)
if (xbar >= s2) {
stop(paste0("The negative binomial distribution is not appropriate for modeling
the conditional sojourn time distribution associated to the current
state i = ", i, " (variance < expectation)"))
}
alphahat <- xbar ^ 2 / (s2 - xbar)
phat <- xbar / s2
theta0 <- c(alphahat, phat)
logLik <- function(par) {
mask <- counting$Nik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
fk <- rep.int(x = 0, times = kmax)
fk[mask] <- dnbinom(x = kmask, size = par[1], prob = par[2], log = TRUE)
return(-(sum(counting$Nik[i, ] * fk)))
}
# Constraints about the values of the parameters:
# alpha, p > 0
u0 <- diag(x = 1, nrow = 2)
c0 <- c(0, 0)
# p < 1
u1 <- matrix(data = c(0, -1), nrow = 1, ncol = 2)
c1 <- c(-1)
mle <- constrOptim(
theta = theta0,
f = logLik,
ui = rbind(u0, u1),
ci = c(c0, c1),
method = "Nelder-Mead"
)
theta0 <- mle$par
if (!cens.beg & cens.end) {# Censoring at the end
logLik <- function(par) {
mask <- counting$Nik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
fk <- rep.int(x = 0, times = kmax)
fk[mask] <- dnbinom(x = kmask, size = par[1], prob = par[2], log = TRUE)
mask <- counting$Neik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
Fk <- rep.int(x = 0, times = kmax)
Fk[mask] <- pnbinom(q = kmask, size = par[1], prob = par[2], lower.tail = FALSE, log.p = TRUE)
return(-(sum(counting$Nik[i, ] * fk) + sum(counting$Neik[i, ] * Fk)))
}
mle <- constrOptim(
theta = theta0,
f = logLik,
ui = rbind(u0, u1),
ci = c(c0, c1),
method = "Nelder-Mead"
)
theta <- mle$par
} else if (cens.beg & !cens.end) {# Censoring at the beginning
logLik <- function(par) {
mask <- counting$Nik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
fk <- rep.int(x = 0, times = kmax)
fk[mask] <- dnbinom(x = kmask, size = par[1], prob = par[2], log = TRUE)
mask <- counting$Nbik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
Fk <- rep.int(x = 0, times = kmax)
Fk[mask] <- pnbinom(q = kmask, size = par[1], prob = par[2], lower.tail = FALSE, log.p = TRUE)
return(-(sum(counting$Nik[i, ] * fk) + sum(counting$Nbik[i, ] * Fk)))
}
mle <- constrOptim(
theta = theta0,
f = logLik,
ui = rbind(u0, u1),
ci = c(c0, c1),
method = "Nelder-Mead"
)
theta <- mle$par
} else if (cens.beg & cens.end) {# Censoring at the beginning and at the end
logLik <- function(par) {
mask <- counting$Nik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
fk <- rep.int(x = 0, times = kmax)
fk[mask] <- dnbinom(x = kmask, size = par[1], prob = par[2], log = TRUE)
mask <- counting$Nebik[i, ] != 0
kmask <- (0:(kmax - 1))[mask]
Fk <- rep.int(x = 0, times = kmax)
Fk[mask] <- pnbinom(q = kmask, size = par[1], prob = par[2], lower.tail = FALSE, log.p = TRUE)
return(-(sum(counting$Nik[i, ] * fk) + sum(counting$Nebik[i, ] * Fk)))
}
mle <- constrOptim(
theta = theta0,
f = logLik,
ui = rbind(u0, u1),
ci = c(c0, c1),
method = "Nelder-Mead"
)
theta <- mle$par
} else {# No censoring
theta <- theta0
}
return(theta)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.