IRSnorm | R Documentation |
Performs batch correction on multiple runs using an Internal Reference Scale sample.
IRSnorm(MSnSetObj, IRSname = "RefPool", groupingColumn = "Plex")
MSnSetObj |
MSnSet; an object of class MSnSet |
IRSname |
character; name of the Reference group within the SampleGroup column |
groupingColumn |
character; the pData(MSnSetObj) column name used to define batches; default="Plex" |
The Internal Reference Scale sample (IRS) should ideally be representative of the entire proteome detectable across all sample in the experiment, e.g. a pooled sample made up of aliquots of protein from all samples. The IRS is then run and measured in each TMT experiment. The normalization procedure makes measurements of the IRS from different TMT batches exactly the same, and puts all of the reporter ions on the same "intensity scale". The argument 'IRSname' is used to define the name of the Reference group within the SampleGroup column. The argument "groupingColumn" takes one of the column of pData(MSnSetObj) to define separate batches to correct; the default variable name is "Plex".
An object of class MSnSet
(see MSnSet-class
)
data(human_anno)
data(ER_ARID1A_KO_MCF7)
MSnset_SET1 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set1,
metadata=ER_ARID1A_KO_MCF7$metadata_Set1,
indExpData=c(7:15),
Sequences=2,
Accessions=6)
MSnset_SET2 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set2,
metadata=ER_ARID1A_KO_MCF7$metadata_Set2,
indExpData=c(7:15),
Sequences=2,
Accessions=6)
MSnset_SET3 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set3,
metadata=ER_ARID1A_KO_MCF7$metadata_Set3,
indExpData=c(7:15),
Sequences=2,
Accessions=6)
MSnset_SET4 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set4,
metadata=ER_ARID1A_KO_MCF7$metadata_Set4,
indExpData=c(7:14),
Sequences=2,
Accessions=6)
MSnset_SET5 <- convertToMSnset(ER_ARID1A_KO_MCF7$intensities_Set5,
metadata=ER_ARID1A_KO_MCF7$metadata_Set5,
indExpData=c(7:15),
Sequences=2,
Accessions=6)
MSnset_SET1_norm <- normalizeScaling(MSnset_SET1, median)
MSnset_SET2_norm <- normalizeScaling(MSnset_SET2, median)
MSnset_SET3_norm <- normalizeScaling(MSnset_SET3, median)
MSnset_SET4_norm <- normalizeScaling(MSnset_SET4, median)
MSnset_SET5_norm <- normalizeScaling(MSnset_SET5, median)
MSnset_SET1_Pnorm <- summarizeIntensities(MSnset_SET1_norm, sum, human_anno)
MSnset_SET2_Pnorm <- summarizeIntensities(MSnset_SET2_norm, sum, human_anno)
MSnset_SET3_Pnorm <- summarizeIntensities(MSnset_SET3_norm, sum, human_anno)
MSnset_SET4_Pnorm <- summarizeIntensities(MSnset_SET4_norm, sum, human_anno)
MSnset_SET5_Pnorm <- summarizeIntensities(MSnset_SET5_norm, sum, human_anno)
MSnset_SET1_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET1_Pnorm))
MSnset_SET2_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET2_Pnorm))
MSnset_SET3_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET3_Pnorm))
MSnset_SET4_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET4_Pnorm))
MSnset_SET5_Pnorm <- updateSampleNames(updateFvarLabels(MSnset_SET5_Pnorm))
MSnset_comb <- MSnbase::combine(MSnset_SET1_Pnorm,
MSnset_SET2_Pnorm,
MSnset_SET3_Pnorm,
MSnset_SET4_Pnorm,
MSnset_SET5_Pnorm)
tokeep <- complete.cases(fData(MSnset_comb))
MSnset_comb <- MSnset_comb[tokeep,]
sampleNames(MSnset_comb) <- pData(MSnset_comb)$SampleName
fData(MSnset_comb) <- fData(MSnset_comb)[,c(2,3,6)]
colnames(fData(MSnset_comb)) <- c("Sequences", "Modifications", "Accessions")
MSnset_comb_corr <- IRSnorm(MSnset_comb, IRSname="Ref", groupingColumn="Run")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.