# DGB
## Ratio of Medians from Paired Samples
ci.ratio.median.ps <- function(alpha, y1, y2) {
# Computes confidence interval for a ratio of
# population medians in a 2-level within-subjects design
# Arguments:
# alpha: alpha level for 1-alpha confidence
# y1: vector of scores for level 1
# y2: vector of scores for level 2
# Values:
# medians, median ratio, lower limit, upper limit
z <- qnorm(1 - alpha/2)
n <- length(y1)
y1 <- sort(y1)
y2 <- sort(y2)
median1 <- median(y1)
median2 <- median(y2)
y1 <- log(y1 + 1)
y2 <- log(y2 + 1)
a <- round((n + 1)/2 - sqrt(n))
if (a < 1) {a1 = 1}
p <- pbinom(a - 1, size = n, prob = .5)
z0 <- qnorm(1 - p)
L1 <- log(exp(y1[a]) - 1)
U1 <- log(exp(y1[n - a + 1]) - 1)
se1 <- (U1 - L1)/(2*z0)
L2 <- log(exp(y2[a]) - 1)
U2 <- log(exp(y2[n - a + 1]) - 1)
se2 <- (U2 - L2)/(2*z0)
a1 <- (y1 < log(median1))
a2 <- (y2 < log(median2))
a3 <- a1 + a2
a4 <- sum(a3 == 2)
if (n/2 == trunc(n/2)) {
p00 <- (sum(a4) + .25)/(n + 1)
} else {
p00 <- (sum(a4) + .25)/n
}
cov <- (4*p00 - 1)*se1*se2
diff <- log(median1) - log(median2)
se <- sqrt(se1^2 + se2^2 - 2*cov)
L <- exp(diff - z*se)
U <- exp(diff + z*se)
out <- t(c(median1, median2, exp(diff), L, U))
colnames(out) <- c("Median1", "Median2", "Median1/Median2", "LL", "UL")
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.