#####################################
### basic functioning with truncation
#####################################
set.seed(1)
n <- 100
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)
time <- pmin(T, C)
event <- as.numeric(T <= C)
sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]
SL.library <- c("SL.mean")
# exponential form
fit <- stackG(time = time,
event = event,
entry = entry,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "prospective",
bin_size = 0.05,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "exp")
true_S_T_preds <- rbind(c(1, 0.767, 0.767, 0.767, 0.767, 0.767),
c(1, 0.767, 0.767, 0.767, 0.767, 0.767),
c(1, 0.767, 0.767, 0.767, 0.767, 0.767))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (truncation, exponential)", {
expect_equal(sum(diffs), 0)
})
preds <- predict(fit,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3))
estimated_S_T_preds <- round(preds$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() predict() method is not broken (truncation, exponential)", {
expect_equal(sum(diffs), 0)
})
# PI form
fit <- stackG(time = time,
event = event,
entry = entry,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "prospective",
bin_size = 0.05,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "PI")
true_S_T_preds <- rbind(c(1, 0.735, 0.735, 0.735, 0.735, 0.735),
c(1, 0.735, 0.735, 0.735, 0.735, 0.735),
c(1, 0.735, 0.735, 0.735, 0.735, 0.735))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (truncation, PI)", {
expect_equal(sum(diffs), 0)
})
preds <- predict(fit,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
surv_form = "PI")
estimated_S_T_preds <- round(preds$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() predict() method is not broken (truncation, PI)", {
expect_equal(sum(diffs), 0)
})
# dummy time
set.seed(1)
suppressWarnings({
fit <- stackG(time = time,
event = event,
entry = entry,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "prospective",
bin_size = 0.05,
time_basis = "dummy",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "PI")
})
true_S_T_preds <- rbind(c(1,0.735, 0.735, 0.735, 0.735, 0.735),
c(1, 0.735, 0.735, 0.735, 0.735, 0.735),
c(1, 0.735, 0.735, 0.735, 0.735, 0.735))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (truncation, PI, dummy)", {
expect_equal(sum(diffs), 0)
})
########################################
### basic functioning without truncation
########################################
set.seed(1)
n <- 100
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
time <- pmin(T, C)
event <- as.numeric(T <= C)
SL.library <- c("SL.mean")
# exponential form
fit <- stackG(time = time,
event = event,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "prospective",
bin_size = 0.05,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "exp")
true_S_T_preds <- rbind(c(1, 0.799, 0.799, 0.799, 0.799, 0.799),
c(1, 0.799, 0.799, 0.799, 0.799, 0.799),
c(1, 0.799, 0.799, 0.799, 0.799, 0.799))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (no truncation, exponential)", {
expect_equal(sum(diffs), 0)
})
preds <- predict(fit,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3))
estimated_S_T_preds <- round(preds$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() predict() method is not broken (no truncation, exponential)", {
expect_equal(sum(diffs), 0)
})
# PI form
fit <- stackG(time = time,
event = event,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "prospective",
bin_size = 0.05,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "PI")
true_S_T_preds <- rbind(c(1, 0.776, 0.776, 0.776, 0.776, 0.776),
c(1, 0.776, 0.776, 0.776, 0.776, 0.776),
c(1, 0.776, 0.776, 0.776, 0.776, 0.776))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (no truncation, PI)", {
expect_equal(sum(diffs), 0)
})
preds <- predict(fit,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
surv_form = "PI")
estimated_S_T_preds <- round(preds$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() predict() method is not broken (no truncation, PI)", {
expect_equal(sum(diffs), 0)
})
# dummy time
set.seed(1)
suppressWarnings({
fit <- stackG(time = time,
event = event,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "prospective",
bin_size = 0.05,
time_basis = "dummy",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "PI")
})
true_S_T_preds <- rbind(c(1, 0.776, 0.776, 0.776, 0.776, 0.776),
c(1, 0.776, 0.776, 0.776, 0.776, 0.776),
c(1, 0.776, 0.776, 0.776, 0.776, 0.776))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (no truncation, PI, dummy)", {
expect_equal(sum(diffs), 0)
})
####################################################
### basic functioning with truncation, retrospective
####################################################
set.seed(1)
n <- 100
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
entry <- runif(n, 0, 15)
time <- T
sampled <- which(time <= entry)
X <- X[sampled,]
time <- time[sampled]
entry <- entry[sampled]
SL.library <- c("SL.mean")
# exponential form
fit <- stackG(time = time,
entry = entry,
X = X,
newX = X[c(1,2,3),],
newtimes = seq(0, 15, 3),
direction = "retrospective",
bin_size = 0.05,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
SL_control = list(SL.library = SL.library,
V = 5,
method = "method.NNLS"),
surv_form = "exp")
true_S_T_preds <- rbind(c(0.426, 0.426, 0.426, 0.426, 0, 0),
c(0.426, 0.426, 0.426, 0.426, 0, 0),
c(0.426, 0.426, 0.426, 0.426, 0, 0))
estimated_S_T_preds <- round(fit$S_T_preds, digits = 3)
diffs <- (abs(true_S_T_preds - estimated_S_T_preds) > 0.01)
test_that("stackG() returns expected output (right truncation, exponential)", {
expect_equal(sum(diffs), 0)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.