fitNoDE: Fitting the unrestricted model with EM algorithm

View source: R/EM_noDE.R

fitNoDER Documentation

Fitting the unrestricted model with EM algorithm

Description

Fit the DECENT model assuming no differentially-expressed (DE) genes

Usage

fitNoDE(data.obs, spikes, spike.conc, use.spikes, CE.range, tau.init,
  tau.global, tau.est, normalize, GQ.approx, maxit, parallel)

Arguments

data.obs

Observed count matrix for endogeneous genes, rows represent genes, columns represent cells.

spike.conc

A vector of theoretical count for each spike-in in one cell (Only needed if spikes = TRUE).

use.spikes

If TRUE, use spike-ins to estimate capture efficiencies.

CE.range

A two-element vector of the lower limit and upper limit for the estimated range of capture efficiencies (ONLY needed if spikes = FALSE, default [0.02, 0.10]).

tau.init

initial estimates (intcp,slope) that link Beta-Binomial dispersion parameter to the mean expression.

tau.global

whether to use the same tau parameters across cell. Default TRUE

tau.est

Methods to estimate tau parameters. The default 'endo' corresponds to using endogeneous genes. Other options are 'none' which means tau.init is not further estimated and 'spikes' corresponds to using spike-ins.

normalize

Method for estimating size factors, either 'ML' (maximum likelihood, Ye et al., 2017) or 'TMM' (Robinson et al., 2010).

GQ.approx

If TRUE, use Gaussian-Quadrature approximation to speed up E-step.

maxit

maximum number of iterations for EM algorithm.

parallel

If TRUE, run DECENT in parallel.

spike

Observed count matrix for spike-ins, rows represent spike-ins, columns represent cells. Only needed if spikes = TRUE).

Value

A list containing estimates of DE model


cz-ye/DECENT documentation built on Jan. 25, 2023, 5:57 a.m.