#' @export
its_bardata_time <- function() {
tibble::tibble(group1 = runif(6, min = 4, max = 7),
group2 = runif(6, min = 5, max = 8 )
)
}
#' @export
its_table_time <- function(df) {
knitr::kable(df,align = "c")
}
#' removes a group from a dataframe
#'
#' @export
its_remove_a_group_time <- function(df, col = "group", level = "trt2") {
res <- dplyr::filter(df, .data[[{{col}}]] != level) %>%
droplevels()
return(res)
}
#' compost data
#'
#' @export
#'
its_compost_time <- function() {
supplement = factor(rep(c("Formula X1","Formula X2"), 16))
compost = factor(rep(c("John Innes #1", "John Innes #2", "John Innes #2", "John Innes #1"), 8))
size = rep(runif(32))
tibble::tibble(
supplement = supplement,
compost = compost,
size = size
) %>%
dplyr::mutate(size = dplyr::if_else( (supplement == "Formula X1" & compost == "John Innes #2"), (size + 1), size) )
}
#' hr scores table
#'
#' @export
its_hr_score_scheme_time <- function() {
tibble::tibble(
severity = c("Dead", "Very Ill", "Ill", "No Effect"),
score = c(4,3,2,1)
) %>% its_table_time()
}
#' hr score data
#'
#' @export
its_hr_scores_time <- function() {
tibble::tibble(
strain = rep(c("control", "mild", "deadly"),3),
replicate = c(rep(1, 3), rep(2,3), rep(3,3)),
score = c( 1, 3, 4, 2, 3, 4, 1, 3, 3)
)
}
#' mendel data
#'
#' @export
its_mendel_data_time <- function() {
set.seed(123)
tibble::tibble(
cross = sample(c("PP", "PW", "WP", "WW"), 600, replace = TRUE) ,
result = dplyr::if_else(cross == "WW", "W", "P")
)
}
#' mendel count data
#'
#' @export
its_mendel_count_data_time <- function() {
its_mendel_data_time() %>%
dplyr::count(result) %>%
dplyr::rename(colour = result, count = n)
}
#' mendel frequency data
#'
#' @export
its_mendel_frequency_time <- function() {
its_mendel_count_data_time() %>%
tidyr::pivot_wider(names_from = c("colour"), values_from = c("count")) %>%
dplyr::mutate(
ratio_p = P / min(c(P, W)),
ratio_w = W / min(c(P, W)),
freq_p = P / (P + W),
freq_w = W / (P + W)
)
}
#' voter data
#'
#' @export
its_voting_data_time <- function() {
data.frame(
expand.grid(
generation = c("boomer", "millenial"),
alignment = c("fascist", "instagram", "marxist" )
),
count = c(279, 165, 74, 47, 225, 191)
)
}
#' job data
#'
#' @export
its_job_mood_time <- function() {
data.frame(
mood = c('curious', 'curious', 'tense', 'tense', 'whimsical', 'whimsical','tense', 'whimsical', 'whimsical'),
role = c('milliner', 'carpenter', 'milliner', 'carpenter', 'milliner', 'carpenter', "cooper", "cooper", "cooper"),
Freq = c(100, 70, 30, 32, 110, 120, 30, 32, 110)
)
}
#' tutorial data
#'
#' @export
its_small_data_frame_time <- function() {
data.frame(
names = c("Guido", "Marty", "Alan"),
age = c(24,45,11),
score = runif(3) * 100
)
}
#' food data
#'
#' @export
its_food_data_time <- function(n = 20) {
set.seed("123")
df1 <- data.frame(Food = rep("Tortilla Chips", n), Condiment = rep("Hummous", n), Enjoyment = rnorm(n, 90, 5) )
df2 <- data.frame(Food = rep("Tortilla Chips", n), Condiment = rep("Jam", n), Enjoyment = rnorm(n, 60, 4) )
df3 <- data.frame(Food = rep("Porridge", n), Condiment = rep("Hummous",n), Enjoyment = rnorm(n, 60, 4))
df4 <- data.frame(Food = rep("Porridge", n), Condiment = rep("Jam", n), Enjoyment = rnorm(n, 90, 5))
df <- dplyr::bind_rows(list(df1,df2,df3,df4))
df$Food <- factor(df$Food, levels = c("Porridge", "Tortilla Chips"))
df$Condiment <- factor(df$Condiment, levels = c("Hummous", "Jam"))
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.