#' Compute stats for task success (completion) data
#'
#' @description
#' \href{https://g.co/kgs/a7Zyyn}{Sauro and Lewis (2012)} describe various approaches for estimating success rates and generating confidence intervals when you're working with smaller sample sizes. \code{success_stats()} automatically determines which of several estimator adjustments is best suited to the data, and it returns a tibble with the original and adjusted success rates (as a percentage); a field to indicate which adjustment method was used; and information about the confidence interval.
#'
#' \code{success_stats()} and \code{completion_stats()} are synonyms.
#'
#' @details
#' \itemize{
#' \item \code{.x} is the only required argument if you are passing a vector of 1s and 0s, representing successes and failures, respectively. e.g., \code{.x = c(1,1,1,1,1,0,1)}
#' \item If \code{.x} is a single numeric value representing the total number of successes, \code{.n} should be a single numeric value representing the total number of trials (where the value of \code{.y} >= the value of \code{.x}). e.g., \code{.x = 23, .y = 25}
#' \item If \code{.x} is a data frame, \code{.var} should be the unquoted name of the column containing the success data (as 1s and 0s).
#' \item You can modify the alpha level to adjust confidence intervals by including \code{.alpha} as a named argument and providing a numeric value: e.g., \code{.aplha = 0.001}.
#' \item If you're passing a data frame to \code{.x}, you can optionally pass one or more grouping variables as unquoted, comma-separated column names (without naming the \code{...} argument) to compute stats by groups.
#' }
#'
#' Note that \code{NAs} are automatically dropped in all calculations.
#'
#'
#' @param .x A single numeric value, a vector of values, or a long-format data frame with a named column of numeric data (1s and/or 0s) corresponding to task success outcomes. See Details.
#' @return A tibble with success rate(s), confidence interval information, and other information. All percentage values in the output fall within the range of 0 and 100.
#' @family descriptive stats for UX measures
#' @importFrom stats qnorm
#' @importFrom dplyr n select group_by group_modify summarise
#' @include wilson-function.R
#' @include laplace-function.R
#' @include mle-function.R
#' @include adjwald_ci-function.R
#' @rdname success_stats
#' @examples
#' #You can pass a vector of 1s and 0s to .x:
#'
#' success_stats(c(1,1,1,1,0,0,1,1,0,1,0,1))
#'
#' # If you want a summary for a single task, you can provide the number
#' # of successes and trials to .x and .n, respectively:
#'
#' success_stats(.x = 15, .n = 20)
#'
#'
#' # You can pass a long-format data frame to .x and
#' # and specify the name of the appropriate column to .var:
#'
#' .ux_data <-
#' data.frame(
#' "id" = rep(seq(1,10,1),2),
#' "group" = rep(c("A","B"),10),
#' "task" = c(rep(1,10),rep(2,10)),
#' "task_success" = sample(0:1,20,replace=TRUE,prob = c(.3,.65)))
#'
#' success_stats(.ux_data, task_success)
#'
#' # If you have one or more grouping variables, pass them to the ... argument:
#'
#' success_stats(.ux_data, task_success, group, task)
#'
#' # .alpha defaults to 0.05. Change the value by
#' # naming the argument when you call the function:
#'
#' success_stats(15,20, .alpha = 0.01)
#' @export
#'
#'
success_stats <- function(.x, ...) {
UseMethod("success_stats", .x)
}
#' @rdname success_stats
#' @export
completion_stats <- success_stats
#'
#'
#' @rdname success_stats
#' @param .n If \code{.x} is a single numeric value, \code{.n} should be a single numeric value representing the total number of trials. See Details.
#' @param .alpha (Optional) A positive number (where 0 < \code{.alpha} < 1) specifying the significance level to be used. Defaults to \code{.alpha = 0.05}. To set a different significance level, the argument must be named (i.e., \code{.alpha=0.001}) or else the function may yield unexpected results.
#' @export
#'
success_stats.numeric <- function(.x, .n = NULL, ..., .alpha = .05) {
if(length(.x)==1 && missing(.n)) {
stop(
"You need to specify .n as the total number of trials."
)
}
if (.alpha < 0 | .alpha > 1) {
stop(".alpha must be a positive number between 0 and 1")
}
else {
.Z <- stats::qnorm(1.0 - (.alpha / 2))
}
if(length(.x) == 1){
.p <- .x / .n
} else if (any(.x > 1,na.rm = TRUE)){
stop("If you're passing a vector of values, the vector should contain only 1s (for successes) and 0s (for failures).")
} else{
.n <-
length(.x[!is.na(.x)])
.x <-
sum(.x, na.rm=TRUE)
.p <- (.x/.n)
}
if (.p > 1) {
return("STOP! Check your calculations; rate is greater than 100")
stop()
}
else if (.p < 0) {
return("STOP! Check your calculations; rate is less than 0")
stop()
}
else if (.p == 0) {
.pout <- laplace(.success = .x, .trials = .n)
.ci <-
adjwald_ci(.success = .x,
.trials = .n,
.Z = .Z)
.out <- list("=0", "Laplace", .pout, list(0, .ci[[2]]))
.out
}
else if (.p == 1) {
.pout <- laplace(.success = .x, .trials = .n)
.ci <-
adjwald_ci(.success = .x,
.trials = .n,
.Z = .Z)
.out <- list("=1", "Laplace", .pout, list(.ci[[1]], 1))
.out
}
else if (.p < .5 && .p != 0) {
.pout <-
wilson(.success = .x,
.trials = .n,
.Z = .Z)
.ci <-
adjwald_ci(.success = .x,
.trials = .n,
.Z = .Z)
.out <- list("<.5", "Wilson", .pout, .ci)
.out
}
else if (.p > .9 && .p != 0) {
.pout <-
laplace(.success = .x, .trials = .n)
.ci <-
adjwald_ci(.success = .x,
.trials = .n,
.Z = .Z)
.out <- list("<.9", "Laplace", .pout, .ci)
.out
}
else {
.pout <-
mle(.success = .x, .trials = .n)
.ci <-
adjwald_ci(.success = .x,
.trials = .n,
.Z = .Z)
.out <- list(".5<p<.9", "MLE", .pout, .ci)
.out
}
return(
data.frame(
"successes" = .x,
"trials" = .n,
"observed_success" = round(.p * 100, 2),
"estimated_success" = round(.out[[3]] * 100, 2),
"success_estimator" = .out[[2]],
"ci_low" = round(.out[[4]][[1]] *100, 2),
"ci_hi" =
ifelse(.out[[4]][[2]] == 100,100.00,round(.out[[4]][[2]] * 100, 2)),
"ci_method" = paste0((1.0-.alpha)*100,"% CI based on Adjusted Wald"),
stringsAsFactors = FALSE
)
)
}
#' @rdname success_stats
#' @param .var If \code{.x} is a long-format data frame, the (unquoted) name of a data frame column containing task success outcomes (as 1s and 0s, corresponding to successes and failures, respectively).
#' @param ... (Optional) If \code{.x} is a long-format data frame, you can pass the name of one or more grouping variables as unquoted, comma-separated column names (without naming the \code{...} argument) to compute stats by groups.
#' @export
#'
success_stats.data.frame <- function(.x, .var, ..., .alpha = 0.05) {
if (.alpha < 0 | .alpha > 1) {
stop(".alpha must be a positive integer between 0 and 1")
}
.out <-
dplyr::group_by(.x, ...)
.out <-
dplyr::summarise(
.out,
trials = dplyr::n(),
success = sum({{ .var }}),
.groups = "keep"
)
.out <-
dplyr::group_modify(.out,
~ success_stats.numeric(.x$success,
.n = .x$trials,
.alpha = .alpha),
.keep = TRUE)
return(.out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.