# By grid plot
# Base plot code
# May2019 fully sorted
# # Can I turn this into a function I can use to select either one of 3 different estimates of abundance into
# # seed, density, rats?
# meanS <- dat.msr.1 %>%
# filter(spp == "seed") %>%
# mutate(true.date = as.Date(true.date),
# mean.s = est.dat)
#
# #comes from summary Rscript.
# # source(./R/figures/summar...)
# meanS.1 <- mean1 %>%
# filter(spp == "seed") %>%
# mutate(true.date = as.Date(true.date))
# # Cleaning up total dataset
# plot.dat.all1 # already done!
#
# # summaries
# mouse.mean <- plot.dat.all1 %>%
# group_by(Control, Valley, Date) %>%
# summarise(
# mean.s = mean(N),
# sd.s = sd(N),
# se.s = sd(N) / sqrt(length(N)) * 1.96,
# lcl.s = mean(N) - (sd(N) / sqrt(length(N)) *
# 1.96),
# ucl.s = mean(N) + (sd(N) / sqrt(length(N)) *
# 1.96)
# ) %>%
# ungroup()
#
# mouse.mean <- mouse.mean %>%
# mutate(
# gp.treat = factor(paste(Valley, Control)),
# N = mean.s,
# Rats = factor("Full")
# )
# sorting summary dataset for the last time -------------------------------
#summarising seed
table(is.na(p.design1$grid))
#remove NA for making space in last plot
p.design1 <- p.design1[1:144, ]
#no grid na anymore
table(is.na(p.design1$grid))
#making datasest
p.design2 <- p.design1 %>%
group_by(Control, Valley, Date) %>%
summarise(N = mean(N),
Rats = factor("Full", levels = c("Full", "Reduced"))) %>%
ungroup() %>%
mutate(grid = factor(paste(Control, Valley)))
# grouping of grid correct?
levels(p.design2$grid)
p.design2$Rats
# glimpse(p.design2)
levels(seed.mean$gp.treat)
# plots -------------------------------------------------------------------
#plot raw seed
fig.3.N <- ggplot(p.design1,
aes(
y = N,
col = Rats,
shape = Valley,
fill = Control,
x = Date
)) +
# geom_line(col = "grey50") +
geom_point(aes(size = Rats,
group = grid),
stroke = 1.25,
alpha = 0.3) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
# manually define the fill colours
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
geom_line(
data = p.design2,
aes(y = N,
x = Date),
size = 0.95,
col = "grey50"
) +
geom_point(
data = p.design2,
aes(
y = N,
col = Rats,
shape = Valley,
fill = Control,
x = Date
),
size = 7
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
xlab(expression(paste("Time", "(", italic(t), ")"))) +
ylab(expression(atop(paste("Mouse "," ", " Abundance"," "),
paste("(",italic(N[jt]),")"))))
fig.3.N
# export plot for example vignette
jpeg("./figs/fig-3.1-study.jpeg")
fig.2.plot.design
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.