# By grid plot
# Base plot code
# May2019 fully sorted
# # Can I turn this into a function I can use to select either one of 3 different estimates of abundance into
# # seed, density, rats?
# meanS <- dat.msr.1 %>%
# filter(spp == "seed") %>%
# mutate(true.date = as.Date(true.date),
# mean.rat = est.dat)
#
# #comes from summary Rscript.
# # source(./R/figures/summar...)
# meanS.1 <- mean1 %>%
# filter(spp == "seed") %>%
# mutate(true.date = as.Date(true.date))
# Cleaning up total dataset
plot.dat.all1 <- plot.dat.all1 %>%
mutate(trip = as.character(trip))# already done!
# rats have only 80 estimates not 144
#meanR <- read_csv("C://Users/s435389/Dropbox/data/mna_allrat.csv") %>%
# select (valley, grid ,trip.no ,n) %>%
# select (grid ,trip.no ,n) %>%
# mutate(trip = as.character(trip.no),
# grid = grid,
# rat.mna = n,
# Valley = factor(valley, labels = c("Eglinton", "Hollyford")))
# new computer
meanR <- read_csv("C://Users/s435389/Drpbox/data/mna_allrat.csv") %>%
select (valley, grid ,trip.no ,n) %>%
# select (grid ,trip.no ,n) %>%
mutate(trip = as.character(trip.no),
grid = grid,
rat.mna = n,
Valley = factor(valley, labels = c("Eglinton", "Hollyford")))
joined.rats <- left_join(plot.dat.all1, meanR, by = c("grid", "Valley", "trip"))
# glimpse(joined.rats)
# joined.rats <- inner_join(plot.dat.all1,meanR, by = c("grid1", "valley", "trip"))
# glimpse(joined.rats)
# table(joined.rats$rat.mna)
# names(plot.dat.all1)
# names(meanR)
# joined.rats$Valley
# joined.rats$Valley.y
# summaries
rat.mean <- joined.rats %>%
group_by(Control, Valley, Date) %>%
summarise(mean.rat = mean(rat.mna, na.rm = TRUE),
sd.rat = sd(rat.mna, na.rm = TRUE),
se.rat = sd.rat / sqrt(length(rat.mna)) * 1.96,
lcl.rat = mean.rat - (sd.rat / sqrt(length(rat.mna)) *
1.96),
ucl.rat = mean.rat + (sd.rat / sqrt(length(rat.mna)) *
1.96)
) %>%
ungroup()
rat.mean <- rat.mean %>%
mutate(Valley = Valley,
gp.treat = factor(paste(Valley, Control)),
N = mean.rat,
Rats = factor("Full")
)
# glimpse(joined.rats)
# sorting summary dataset for the last time -------------------------------
#summarising seed
# table(is.na(p.design1$grid))
# #remove NA for making space in last plot
# p.design1 <- joined.rats[1:144, ]
#
#
# p.design1 <- left_join(p.design1, meanR, by = c("grid1", "valley", "trip"))
#
# #no grid na anymore
# table(is.na(p.design1$grid))
#
# #making datasest
# p.design2 <- rat.mean %>%
# group_by(Control, Valley, Date) %>%
# summarise(N = mean(N),
# Rats = factor("Full", levels = c("Full", "Reduced"))) %>%
# ungroup() %>%
# mutate(grid = factor(paste(Control, Valley)))
#
# # grouping of grid correct?
# levels(p.design2$grid)
# p.design2$Rats
#
# glimpse(p.design2)
#
#
# levels(rat.mean$gp.treat)
# plots -------------------------------------------------------------------
#plot raw seed
fig.3.rat <- ggplot(joined.rats,
aes(
y = rat.mna,
col = Rats,
shape = Valley,
fill = Control,
x = Date
)) +
# geom_line(col = "grey50") +
geom_point(aes(size = Rats),
stroke = 1.25,
alpha = 0.5) +
scale_color_manual(name = "Stoat Control",
values = c("white", "black", "white")) +
scale_shape_manual(name = "Ecosystem",
values = c(24, 21)) +
scale_size_manual(name = "Rat Control", values = c(2.5, 3, 2.5)) +
# manually define the fill colours
scale_fill_manual(
name = "Stoat Control",
values = c("cornflowerblue", "darkorange", "cornflowerblue")
) +
geom_line(
data = rat.mean,
aes(y = mean.rat,
x = Date),
size = 0.95,
col = "grey50"
) +
geom_point(
data = rat.mean,
aes(
y = mean.rat,
col = Rats,
shape = Valley,
fill = Control,
x = Date
),
size = 7
) +
# Remove fill legend and replace the fill legend using the newly created size
guides(
col = "none",
size = guide_legend(override.aes = list(
shape = c(15,0),alpha = 1
)),
shape = guide_legend(override.aes = list(
shape = c(24, 21), size = 4
)),
fill = guide_legend(override.aes = list(
col = c("cornflowerblue", "darkorange"),shape = c("square"),
size = 4
))
) +
xlab(expression(paste("Time", "(", italic(t), ")"))) +
ylab(expression(atop(paste("Minimum "," ", " number"," "),
paste(" ", "of"," ",
"rats"," ","(",italic(R[jt]),")"))) )
fig.3.rat
# export plot for example vignette
jpeg("./figs/fig-3.1-study.jpeg")
fig.2.plot.design
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.