rec_a <- function(x){
case_when(x == "1" ~ 1,
x == "0" ~ -1,
TRUE ~ 0)
}
rec_n <- function(x){
case_when(x %in% c("1", "0") ~ 1,
TRUE ~ 0)
}
h2o.glrm.ctrl <- function(
cols = NULL,
model_id = NULL,
validation_frame = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
representation_name = NULL,
loading_name = NULL,
transform = c("NONE", "STANDARDIZE","NORMALIZE", "DEMEAN", "DESCALE"),
k = 5,
loss = c("Quadratic","Absolute", "Huber", "Poisson", "Hinge", "Logistic","Periodic"),
loss_by_col = c("Quadratic", "Absolute","Huber", "Poisson", "Hinge", "Logistic", "Periodic", "Categorical", "Ordinal"),
loss_by_col_idx = NULL,
multi_loss = c("Categorical","Ordinal"),
period = 1,
regularization_x = c("None","Quadratic", "L2", "L1", "NonNegative", "OneSparse", "UnitOneSparse", "Simplex"),
regularization_y = c("None","Quadratic", "L2", "L1", "NonNegative", "OneSparse", "UnitOneSparse", "Simplex"),
gamma_x = 0,
gamma_y = 0,
max_iterations = 10000,
max_updates = 2000,
init_step_size = 1,
min_step_size = 1e-04,
seed = -1,
init = c("Random", "SVD", "PlusPlus", "User"),
svd_method = c("GramSVD", "Power", "Randomized"),
user_y = NULL,
user_x = NULL,
expand_user_y = TRUE,
impute_original = FALSE,
recover_svd = FALSE,
max_runtime_secs = 0,
export_checkpoints_dir = NULL,
...){
parms <- list()
if (!missing(model_id))
parms$model_id <- model_id
if (!missing(validation_frame))
parms$validation_frame <- validation_frame
if (!missing(ignore_const_cols))
parms$ignore_const_cols <- ignore_const_cols
if (!missing(score_each_iteration))
parms$score_each_iteration <- score_each_iteration
if (!missing(representation_name))
parms$representation_name <- representation_name
if (!missing(loading_name))
parms$loading_name <- loading_name
if (!missing(transform))
parms$transform <- transform
if (!missing(k))
parms$k <- k
if (!missing(loss))
parms$loss <- loss
if (!missing(loss_by_col))
parms$loss_by_col <- loss_by_col
if (!missing(loss_by_col_idx))
parms$loss_by_col_idx <- loss_by_col_idx
if (!missing(multi_loss))
parms$multi_loss <- multi_loss
if (!missing(period))
parms$period <- period
if (!missing(regularization_x))
parms$regularization_x <- regularization_x
if (!missing(regularization_y))
parms$regularization_y <- regularization_y
if (!missing(gamma_x))
parms$gamma_x <- gamma_x
if (!missing(gamma_y))
parms$gamma_y <- gamma_y
if (!missing(max_iterations))
parms$max_iterations <- max_iterations
if (!missing(max_updates))
parms$max_updates <- max_updates
if (!missing(init_step_size))
parms$init_step_size <- init_step_size
if (!missing(min_step_size))
parms$min_step_size <- min_step_size
if (!missing(seed))
parms$seed <- seed
if (!missing(init))
parms$init <- init
if (!missing(svd_method))
parms$svd_method <- svd_method
if (!missing(user_y))
parms$user_y <- user_y
if (!missing(user_x))
parms$user_x <- user_x
if (!missing(expand_user_y))
parms$expand_user_y <- expand_user_y
if (!missing(impute_original))
parms$impute_original <- impute_original
if (!missing(recover_svd))
parms$recover_svd <- recover_svd
if (!missing(max_runtime_secs))
parms$max_runtime_secs <- max_runtime_secs
if (!missing(export_checkpoints_dir))
parms$export_checkpoints_dir <- export_checkpoints_dir
return(parms)
}
h2o.init.ctrl <- function(
enable_assertions = FALSE,
nthreads = -1,
max_mem_size = "8G",
ip = "localhost",
port = 54321,
name = NA_character_,
startH2O = TRUE,
forceDL = FALSE,
license = NULL,
min_mem_size = NULL,
ice_root = tempdir(),
log_dir = NA_character_,
log_level = NA_character_,
strict_version_check = TRUE,
proxy = NA_character_,
https = FALSE,
cacert = NA_character_,
insecure = FALSE,
username = NA_character_,
password = NA_character_,
use_spnego = FALSE,
cookies = NA_character_,
context_path = NA_character_,
ignore_config = FALSE,
extra_classpath = NULL,
jvm_custom_args = NULL,
bind_to_localhost = TRUE,
...){
list(
enable_assertions = enable_assertions,
nthreads = -nthreads,
max_mem_size = max_mem_size,
ip = ip,
port = port,
name = name,
startH2O = startH2O,
forceDL = forceDL,
license = license,
min_mem_size = min_mem_size,
ice_root = ice_root,
log_dir = log_dir,
log_level = log_level,
strict_version_check = strict_version_check,
proxy = proxy,
https = https,
cacert = cacert,
insecure = insecure,
username = username,
password = password,
use_spnego = use_spnego,
cookies = cookies,
context_path = context_path,
ignore_config = ignore_config,
extra_classpath = extra_classpath,
jvm_custom_args = jvm_custom_args,
bind_to_localhost = bind_to_localhost
)
}
rs <- function(x, l=-2, u=2){
x <- x-min(x)
x <- x/max(x)
x <- x*(u-l)
x <- x + l
x
}
getP <- function(x, ....){
if(!inherits(x, "try-error")){
b <- coef(x)[2]
s <- sqrt(diag(vcov(x)))[2]
p <- pnorm(abs(b/s), lower.tail=FALSE)
p
}else{
NA
}
}
getCoef <- function(x, ....){
if(!inherits(x, "try-error")){
b <- coef(x)[2]
}else{
NA
}
}
##' @method predict logistf
predict.logistf <- function(obj, type="response"){
## this version of the predict function for Firth logit
## is designed specifically for this application and is
## not a general-use function.
type <- match.arg(type)
plogis(obj$linear.predictors)
}
firth_fun <- function(formula, data, ...){
logistf(formula, data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.