# specialized methods for the human SIP model
#' @title Size of effective infectious human population
#' @description Implements [F_X] for the SIP model.
#' @inheritParams F_X
#' @return a [numeric] vector of length `nStrata`
#' @export
F_X.SIP <- function(t, y, pars, i) {
I = y[pars$ix$X[[i]]$I_ix]
X = with(pars$Xpar[[i]], c*I)
return(X)
}
#' @title Size of effective infectious human population
#' @description Implements [F_X] for the SIP model.
#' @inheritParams F_X
#' @return a [numeric] vector of length `nStrata`
#' @export
F_H.SIP <- function(t, y, pars, i){
with(pars$ix$X[[i]],{
S = y[S_ix]
I = y[I_ix]
P = y[P_ix]
return(S+I+P)
})}
#' @title Compute the "true" prevalence of infection / parasite rate
#' @description Implements [F_pr] for the SIP model.
#' @inheritParams F_pr
#' @return a [numeric] vector of length `nStrata`
#' @export
F_pr.SIP <- function(varslist, pars, i) {
pr = with(varslist$XH[[i]], I/H)
return(pr)
}
#' @title Infection blocking pre-erythrocytic immunity
#' @description Implements [F_b] for the SIP model.
#' @inheritParams F_b
#' @return a [numeric] vector of length `nStrata`
#' @export
F_b.SIP <- function(y, pars,i) {
with(pars$Xpar[[i]], b)
}
#' @title Derivatives for human population
#' @description Implements [dXdt] for the SIP model.
#' @inheritParams dXdt
#' @return a [numeric] vector
#' @export
dXdt.SIP <- function(t, y, pars, i){
ar <- 1-exp(-pars$FoI[[i]])
with(list_Xvars(y, pars, i),{
H <- F_H(t, y, pars, i)
with(pars$Xpar[[i]], {
St <- (1-ar)*S + eta*P + r*I
It <- (1-r)*I + ar*S*(1-rho)
Pt <- rho*ar*S + (1-eta)*P
St <- St - xi*St
It <- It - xi*It
Pt <- Pt + xi*It + xi*St
St <- dHdt(t, St, i) + Births(t, H, pars, i)
It <- dHdt(t, It, i)
Pt <- dHdt(t, Pt, i)
return(c(St, It, Pt))
})
})
}
#' @title Return the variables as a list
#' @description This method dispatches on the type of `pars$Xpar`
#' @inheritParams list_Xvars
#' @return a [list]
#' @export
list_Xvars.SIP <- function(y, pars, i) {
with(pars$ix$X[[i]],
return(list(
S = y[S_ix],
I = y[I_ix],
P = y[P_ix]
)
))
}
#' @title Compute the HTC for the SIP model
#' @description Implements [HTC] for the SIP model with demography.
#' @inheritParams HTC
#' @return a [numeric] vector
#' @export
HTC.SIP <- function(pars, i) {
with(pars$Xpar[[i]],
return((1-rho)*b/(r+xi)*xi/(eta+xi))
)
}
#' @title Setup Xpar.SIP
#' @description Implements [setup_Xpar] for the SIP model
#' @inheritParams setup_Xpar
#' @return a [list] vector
#' @export
setup_Xpar.SIP = function(Xname, pars, i, Xopts=list()){
pars$Xpar[[i]] = make_Xpar_SIP(pars$Hpar[[i]]$nStrata, Xopts)
return(pars)
}
#' @title Setup Xinits.SIP
#' @description Implements [setup_Xinits] for the SIP model
#' @inheritParams setup_Xinits
#' @return a [list] vector
#' @export
setup_Xinits.SIP = function(pars, i, Xopts=list()){
pars$Xinits[[i]] = make_Xinits_SIP(pars$Hpar[[i]]$nStrata, Xopts, H0=pars$Hpar[[i]]$H)
return(pars)
}
#' @title Make parameters for SIP human model, with defaults
#' @param nStrata the number of population strata
#' @param Xopts a [list] that could overwrite defaults
#' @param b transmission probability (efficiency) from mosquito to human
#' @param c transmission probability (efficiency) from human to mosquito
#' @param r recovery rate
#' @param rho probability of successful treatment upon infection
#' @param eta prophylaxis waning rate
#' @param xi background treatment rate
#' @return a [list]
#' @export
make_Xpar_SIP = function(nStrata, Xopts=list(),
b=0.55, r=1/180, c=0.15,
rho=.1, eta=1/25, xi=1/365){
with(Xopts,{
Xpar = list()
class(Xpar) <- c("SIP")
Xpar$b = checkIt(b, nStrata)
Xpar$c = checkIt(c, nStrata)
Xpar$r = checkIt(r, nStrata)
Xpar$rho = checkIt(rho, nStrata)
Xpar$eta = checkIt(eta, nStrata)
Xpar$xi = checkIt(xi, nStrata)
return(Xpar)
})}
#' @title Make initial values for the SIP human model, with defaults
#' @param nStrata the number of population strata
#' @param Xopts a [list] that could overwrite defaults
#' @param H0 the initial human population density
#' @param S0 the initial values of the parameter S
#' @param I0 the initial values of the parameter I
#' @param P0 the initial values of the parameter P
#' @return a [list]
#' @export
make_Xinits_SIP = function(nStrata, Xopts = list(), H0=NULL, S0=NULL,
I0=1, P0=0){with(Xopts,{
if(is.null(S0)) S0=H0-I0-P0
S = checkIt(S0, nStrata)
I = checkIt(I0, nStrata)
P = checkIt(P0, nStrata)
return(list(S=S, I=I, P=P))
})}
#' @title Parse the output of deSolve and return variables for the SIP model
#' @description Implements [parse_dts_out_X] for the SIP model
#' @inheritParams parse_dts_out_X
#' @return none
#' @export
parse_dts_out_X.SIP <- function(dts_out, pars, i) {
time = dts_out[,1]
with(pars$ix$X[[i]],{
S = dts_out[,S_ix+1]
I = dts_out[,I_ix+1]
P = dts_out[,P_ix+1]
H = S+I+P
return(list(time=time,S=S,I=I,P=P,H=H))
})}
#' @title Add indices for human population to parameter list
#' @description Implements [make_indices_X] for the SIP model.
#' @inheritParams make_indices_X
#' @return none
#' @importFrom utils tail
#' @export
make_indices_X.SIP <- function(pars, i) {with(pars,{
S_ix <- seq(from = max_ix+1, length.out=Hpar[[i]]$nStrata)
max_ix <- tail(S_ix, 1)
I_ix <- seq(from = max_ix+1, length.out=Hpar[[i]]$nStrata)
max_ix <- tail(I_ix, 1)
P_ix <- seq(from = max_ix+1, length.out=Hpar[[i]]$nStrata)
max_ix <- tail(P_ix, 1)
pars$max_ix = max_ix
pars$ix$X[[i]] = list(S_ix=S_ix, I_ix=I_ix, P_ix=P_ix)
return(pars)
})}
#' @title Make parameters for SIP human model
#' @param pars a [list]
#' @param b transmission probability (efficiency) from mosquito to human
#' @param c transmission probability (efficiency) from human to mosquito
#' @param r recovery rate
#' @param rho probability of successful treatment upon infection
#' @param eta prophylaxis waning rate
#' @param xi background treatment rate
#' @return none
#' @export
make_parameters_X_SIP <- function(pars, b, c, r, rho, eta, xi){
stopifnot(is.numeric(b), is.numeric(c), is.numeric(r), is.numeric(rho), is.numeric(eta), is.numeric(xi))
Xpar <- list()
class(Xpar) <- c('SIP')
Xpar$b <- b
Xpar$c <- c
Xpar$r <- r
Xpar$rho <- rho
Xpar$eta <- eta
Xpar$xi <- xi
pars$Xpar[[1]] <- Xpar
return(pars)
}
#' @title Make inits for SIP human model
#' @param pars a [list]
#' @param S0 size of infected population in each strata
#' @param I0 size of infected population in each strata
#' @param P0 size of population protected by prophylaxis in each strata
#' @return none
#' @export
make_inits_X_SIP <- function(pars, S0, I0, P0) {
stopifnot(is.numeric(I0), is.numeric(P0), is.numeric(S0))
pars$Xinits[[1]] = list(S=S0, I=I0, P=P0)
return(pars)
}
#' @title Update inits for the SIP human model from a vector of states
#' @inheritParams update_inits_X
#' @return none
#' @export
update_inits_X.SIP <- function(pars, y0, i) {
with(list_Xvars(y0, pars, i),{
pars$Xinits[[i]] = make_Xinits_SIP(pars$Hpar[[i]]$nStrata, list(), S0=S, I0=I, P0=P)
return(pars)
})}
#' @title Return initial values as a vector
#' @description This method dispatches on the type of `pars$Xpar`.
#' @inheritParams get_inits_X
#' @return none
#' @export
get_inits_X.SIP <- function(pars, i){with(pars$Xinits[[i]],{
c(S, I, P)
})}
#' Plot the density of infected individuals for the SIP model
#'
#' @inheritParams dts_plot_X
#' @export
dts_plot_X.SIP = function(pars, i=1, clrs=c("darkblue", "darkred", "darkgreen"), llty=1, stable=FALSE, add_axes=TRUE){
vars=with(pars$outputs,if(stable==TRUE){stable_orbits}else{orbits})
if(add_axes==TRUE)
with(vars$XH[[i]],
plot(time, 0*time, type = "n", ylim = c(0, max(H)),
ylab = "# Infected", xlab = "Time"))
dts_lines_X_SIP(vars$XH[[i]], pars, clrs, llty)
}
#' Add lines for the density of infected individuals for the SIP model
#'
#' @param XH a list with the outputs of parse_dts_out_X.SIP
#' @param pars a list that defines an `ramp.dts` model (*e.g.*, generated by `dts_setup()`)
#' @param clrs a vector of colors
#' @param llty an integer (or integers) to set the `lty` for plotting
#'
#' @export
dts_lines_X_SIP = function(XH, pars, clrs=c("darkblue", "darkred", "darkgreen"), llty=1){
with(XH,{
if(pars$Hpar[[1]]$nStrata==1) {
lines(time, S, col=clrs[1], lty = llty[1])
lines(time, I, col=clrs[2], lty = llty[1])
lines(time, P, col=clrs[3], lty = llty[1])
}
if(pars$Hpar[[1]]$nStrata>1){
if (length(clrs)==1) clrs=matrix(clrs, 3, pars$Hpar[[i]]$nStrata)
if (length(llty)==1) llty=rep(llty, pars$Hpar[[i]]$nStrata)
for(i in 1:pars$Hpar[[1]]$nStrata){
lines(time, S[,i], col=clrs[1,i], lty = llty[i])
lines(time, I[,i], col=clrs[2,i], lty = llty[i])
lines(time, P[,i], col=clrs[3,i], lty = llty[i])
}
}
})}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.