context("tmf")
skip_on_cran()
set.seed(407774)
test_dat <- as.data.frame(cbind(c(rep(0,500),rep(1,500)),
c(sort(rnorm(500,0,1)),sort(rnorm(500,1,1.5))),
rbinom(1000,2,0.4), rnorm(1000,0,1)))
colnames(test_dat) <- c("TR", "Y", "U", "U2")
colMeans(test_dat)
test_dat0 <- test_dat
test_dat$Y[1:200] <- NA
test_dat2 <- test_dat
test_dat2$Y[1:10] <- "Oops"
test_dat3 <- test_dat
test_dat3$TR[1:10] <- 3
# checking TM estimate and adjusted TM estimate
expect_equal(round(as.numeric(tm(Y ~ TR + U + U2, GR="TR", trF=0.5, side="LOW",
n_perm=1000, adj_est=TRUE, data=test_dat)$coefficients[c(1,4),1]),4),
round(c(1.482352,1.032575 ),4))
# checking default 0.5 trimming when no dropout
expect_equal(as.numeric(tm(Y ~ TR + U + U2, GR="TR", side="LOW",
n_perm=1000, adj_est=TRUE, data=test_dat0)$trimfrac),
0.5)
# checking default adaptive trimming under dropout
expect_equal(as.numeric(tm(Y ~ TR + U + U2, GR="TR", side="LOW",
n_perm=1000, adj_est=FALSE, data=test_dat)$trimfrac),
sum(is.na(test_dat$Y[test_dat$TR==0]))/length(which(test_dat$TR==0)))
# checking error messages
expect_error(tm(Y ~ TR + U + U2, GR="Trt", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat),
"TR variable not in data")
expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.4, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat),
"Adjusted estimate can only be computed for 50% trimming")
expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat2),
"Y non-numeric")
expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat3),
"TR non-binary")
expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.3, side="LOW", n_perm=1000, adj_est=FALSE, data=test_dat),
"Trimming fraction smaller than largest dropout proportion")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.