WaveICA: WaveICA method to remove batch effects

Description Usage Arguments Value Author(s) Examples

View source: R/WaveICA.R

Description

Removing batch effects for metabolomics data.

Usage

1
 WaveICA(data,wf="haar",batch,group=NULL,K=20,t=0.05,t2=0.05,alpha=0)

Arguments

data

Sample-by-matrix metabolomics data.

wf

selecting wavelet functions, the default is "haar".

batch

batch labels.

group

denoting the biological group such as disease vs group. This param is optional. The default is NULL.

K

The maximal component that ICA decomposes.

t

The threshold to consider a component associate with the batch, should be between 0 and 1.

t2

The threshold to consider a component associate with the group, should be between 0 and 1.

alpha

The trade-off value between the independence of samples and those of variables and should be between 0 and 1.

Value

A list that contains the clean data.

Author(s)

Kui deng dengkui_stat@163.com

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
## load the demo data
data(Amide_data, package = "WaveICA")
##create a folder for demo
dir.create("Demo for WaveICA")
setwd("Demo for WaveICA")
data_Amide_stat_merge_order<-Amide_data[order(Amide_data$injection.order),]
data.Amide.stat_order<-data_Amide_stat_merge_order[,-c(1:5)]

### Generating group and batch
data_Amide_stat_merge_order$group[data_Amide_stat_merge_order$group=="QC"]<-2
group_zong_Amide<-as.numeric(data_Amide_stat_merge_order$group)
batch_zong_Amide<-data_Amide_stat_merge_order$batch

group_sample_Amide<-group_zong_Amide[group_zong_Amide!=2]
batch_sample_Amide<-batch_zong_Amide[group_zong_Amide!=2]

batch_qc_Amide<-batch_zong_Amide[group_zong_Amide==2]

##### Separation of QC samples and subject samples
data.Amide.stat.order.sample<-data.Amide.stat_order[group_zong_Amide!=2,]
data.Amide.stat.order.QC<-data.Amide.stat_order[group_zong_Amide==2,]

#### PCA score plots
bitmap("PCA_original(group).tiff",type="jpeg",res=500)
pca(data=data.Amide.stat_order,id=group_zong_Amide+1,plot=2,label=c("CE","CRC","QC"))
dev.off()

bitmap("PCA_original(batch).tiff",type="jpeg",res=500)
pca(data=data.Amide.stat_order,id=batch_zong_Amide,plot=2,label=c("Batch1","Batch2","Batch3","Batch4"))
dev.off()

#### Dustances between QCS
pc.original<-prcomp(data.Amide.stat_order,scale.=T)
pc.original_select<-pc.original$x[group_zong_Amide==2,1:3]

dist.original<-dist(pc.original_select,method ="euclidean")
dist.original<-as.matrix(dist.original)
sum(dist.original)/(85*85-85)

##### Distances between subject samples
pc.original<-prcomp(data.Amide.stat_order,scale.=T)
pc.original_select<-pc.original$x[group_zong_Amide!=2,1:3]

dist.original<-dist(pc.original_select,method ="euclidean")
dist.original<-as.matrix(dist.original)
sum(dist.original)/(644*644-644)

## Variable selection
univariate_original_Amide<-var_select(data=data.Amide.stat.order.sample,label=group_sample_Amide,t.test=T,Wilcox=F,AUC=F,FDR=T,VIP=T,FC=T,comps=3)
var_select_original_Amide<-rownames(univariate_original_Amide[univariate_original_Amide$VIP>1&univariate_original_Amide$P.FDR<0.05,])


## Predictive accuracy
svm.model.Amide<-SVM_MODEL(X=data.Amide.stat.order.sample[,var_select_original_Amide],Y=group_sample_Amide,kernel="radial",kfold=5)

####  Predictive accuracy with the same number of variables
univariate_original_Amide_order<-univariate_original_Amide[order(univariate_original_Amide$VIP,decreasing=T),]

auc_zong_original_Amide<-c()
for (i in seq(50,1000,50)){
  cat(paste("###########################",i,"variable####################\n"))
  var_select_original<-rownames(univariate_original_Amide_order)[1:i]
  svm.model.original<-SVM_MODEL(X=data.Amide.stat.order.sample[,var_select_original],Y=group_sample_Amide,kernel="radial",kfold=5)
  AUC<-svm.model.original$auc
  auc_zong_original_Amide<-c(auc_zong_original_Amide,AUC)
}

#### Heatmap of correlation in QCS
library(ggfortify)
library(RColorBrewer)
myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral")))
bitmap(file="heatmap_Original.tiff",type="jpeg",res=500)
rownames(data.Amide.stat.order.QC)<-paste("QC",1:85,sep="")
cor_original<-cor(t(data.Amide.stat.order.QC))
autoplot(cor_original,geom="tile")+scale_fill_gradientn(colors=myPalette(4),limits=c(0.5,1),name="r value")+labs(x="",y="")+
  theme(axis.text.x=element_text(angle=90))+
  scale_x_discrete(limits=paste("QC",c(1,c(1:17)*5),sep=""))+
  scale_y_discrete(limits=paste("QC",c(1,c(1:17)*5),sep=""))+
  theme(axis.text=element_text(face="bold"))+
  guides(fill=F)
dev.off()

## Scatterplot Matrix
bitmap(file="QC_scatterplotmatrix_Original.tiff",type="jpeg",res=500)
pairs(~QC21+QC25+QC34+QC46+QC62+QC68,data=log(t(data.Amide.stat.order.QC)),pch=16,gap=0.5,font.labels = 2,cex=0.8)
dev.off()

########################  Applying WaveICA ######################
data_wave_reconstruct_Amide<-WaveICA(data=data.Amide.stat_order,wf="haar",batch=batch_zong_Amide,group=group_zong_Amide,K=20,t=0.05,t2=0.05,alpha=0)

data_Amide_zong_wave<-data_wave_reconstruct_Amide$data_wave

data_Amide_sample_wave<-data_Amide_zong_wave[group_zong_Amide!=2,]
data_Amide_qc_wave<-data_Amide_zong_wave[group_zong_Amide==2,]


### PCA score plot
bitmap(file="PCA_WaveICA(group).tiff",type="jpeg",res=500)
pca(data=data_Amide_zong_wave,id=group_zong_Amide+1,plot=2,label=c("CE","CRC","QC"))
dev.off()

bitmap(file="PCA_WaveICA(batch).tiff",type="jpeg",res=500)
pca(data=data_Amide_zong_wave,id=batch_zong_Amide,plot=2,label=c("Batch1","Batch2","Batch3","Batch4"))
dev.off()


#### Distances between QCS
pc.WaveICA<-prcomp(data_Amide_zong_wave,scale.=T)
pc.WaveICA_select<-pc.WaveICA$x[group_zong_Amide==2,1:3]

dist.WaveICA<-dist(pc.WaveICA_select,method ="euclidean")
dist.WaveICA<-as.matrix(dist.WaveICA)
sum(dist.WaveICA)/(85*85-85)


#### Distances between subject samples
pc.WaveICA<-prcomp(data_Amide_zong_wave,scale.=T)
pc.WaveICA_select<-pc.WaveICA$x[group_zong_Amide!=2,1:3]

dist.WaveICA<-dist(pc.WaveICA_select,method ="euclidean")
dist.WaveICA<-as.matrix(dist.WaveICA)
sum(dist.WaveICA)/(644*644-644)


### Variable selection
univariate_wave_Amide<-var_select(data=data_Amide_sample_wave,label=group_sample_Amide,t.test=T,Wilcox=F,AUC=F,FDR=T,VIP=T,FC=T,comps=3)

var_select_wave_Amide<-rownames(univariate_wave_Amide[univariate_wave_Amide$VIP>1&univariate_wave_Amide$P.FDR<0.05,])



## Predictive accuracy
svm.model.wave.Amide<-SVM_MODEL(X=data_Amide_sample_wave[,var_select_wave_Amide],Y=group_sample_Amide,kernel="radial",kfold=5)


### Predictive accuracy with the same number of variables
univariate_wave_Amide_order<-univariate_wave_Amide[order(univariate_wave_Amide$VIP,decreasing=T),]

auc_zong_wave_Amide<-c()
for (i in seq(50,1000,50)){
  cat(paste("###########################",i,"variable####################\n"))
  var_select_wave<-rownames(univariate_wave_Amide_order)[1:i]
  svm.model.wave<-SVM_MODEL(X=data_Amide_sample_wave[,var_select_wave],Y=group_sample_Amide,kernel="radial",kfold=5)
  AUC<-svm.model.wave$auc
  auc_zong_wave_Amide<-c(auc_zong_wave_Amide,AUC)
}

## Pearson correlation coefficients
corr_wave_Amide<-correlation(data.Amide.stat.order.QC,data_Amide_qc_wave,method="pearson")
mean(corr_wave_Amide$cor_before)
mean(corr_wave_Amide$cor_after)


library(ggfortify)
library(RColorBrewer)
myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral")))

#### Heatmap of correlation in QCS
bitmap(file="Heatmap_WaveICA.tiff",type="jpeg",res=500)

rownames(data_Amide_qc_wave)<-paste("QC",1:85,sep="")
cor_WaveICA<-cor(t(data_Amide_qc_wave))
autoplot(cor_WaveICA,geom="tile")+scale_fill_gradientn(colors=myPalette(4),limits=c(0.5,1),name="r value")+labs(x="",y="")+
  theme(axis.text.x=element_text(angle=90))+
  scale_x_discrete(limits=paste("QC",c(1,c(1:17)*5),sep=""))+
  scale_y_discrete(limits=paste("QC",c(1,c(1:17)*5),sep=""))+
  theme(axis.text=element_text(face="bold"))+
  guides(fill=F)
dev.off()


## Scatterplot Matrix
bitmap(file="QC_scatterplotmatrix_WaveICA.tiff",type="jpeg",res=500)
pairs(~QC21+QC25+QC34+QC46+QC62+QC68,data=log(t(data_Amide_qc_wave)),pch=16,gap=0.5,font.labels = 2,cex=0.8)
dev.off()

###### Comparing the predictive accuracy
data_auc<-data.frame(auc=c(auc_zong_original_Amide,auc_zong_wave_Amide),var=c(seq(50,1000,50),seq(50,1000,50)),
                     group=c(rep(1,length(auc_zong_original_Amide)),rep(2,length(auc_zong_wave_Amide))))

library(ggplot2)
bitmap(file="Comparing AUC.tiff",type="jpeg",res=500)
ggplot(data=data_auc,aes(x=var,y=auc,col=factor(group)))+geom_line(aes(linetype=factor(group)),size=1)+
  scale_colour_brewer(palette="Set1",labels=c("Original","WaveICA","ComBat","QC-RLSC","ICA"))+
  scale_linetype_manual(values=c(2,1,4,3,5),labels=c("Original","WaveICA","ComBat","QC-RLSC","ICA"))+
  labs(x="# features selected",y="AUC")+
  theme(legend.title = element_blank(),axis.title = element_text(size=rel(1.2),face="bold"),
        legend.text=element_text(size=rel(1.2),face="bold"),legend.key.width=unit(1.5,"cm"))
dev.off()

dengkuistat/WaveICA documentation built on Nov. 6, 2021, 6:21 p.m.