Description Usage Arguments Details Value Methods (by class) Author(s) See Also Examples
Extracts and formats binding scores for each experiment into structures adapted to performing different graphical representations.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | extractBinding(theObject, gff_vec, genome, binsize = 50, before = 2000,
after=2000, mean_or_median = "mean", interpolation_number = 100,
interpolation_average = 10000, ignore_strand = FALSE,
verbose = FALSE)
## S4 method for signature 'ChIPSeqSpikeDataset'
extractBinding(theObject, gff_vec, genome,
binsize = 50, before = 2000, after=2000,
mean_or_median = "mean", interpolation_number = 100,
interpolation_average = 10000, ignore_strand = FALSE,
verbose = FALSE)
## S4 method for signature 'ChIPSeqSpikeDatasetBoost'
extractBinding(theObject, gff_vec, genome,
binsize = 50, before = 2000, after=2000,
mean_or_median = "mean", interpolation_number = 100,
interpolation_average = 10000, ignore_strand = FALSE,
verbose = FALSE)
## S4 method for signature 'ChIPSeqSpikeDatasetList'
extractBinding(theObject, gff_vec, genome,
binsize = 50, before = 2000, after=2000,
mean_or_median = "mean", interpolation_number = 100,
interpolation_average = 10000, ignore_strand = FALSE,
verbose = FALSE)
## S4 method for signature 'ChIPSeqSpikeDatasetListBoost'
extractBinding(theObject, gff_vec,
genome, binsize = 50, before = 2000, after=2000,
mean_or_median = "mean", interpolation_number = 100,
interpolation_average = 10000, ignore_strand = FALSE,
verbose = FALSE)
|
theObject |
|
gff_vec |
File in GFF format containing annotations used to plot information |
genome |
The UCSC code of reference genome, e.g. 'hg19' for Homo sapiens (see details) |
binsize |
Binning size used to create bigwig files. Default is 50. |
before |
Length in bp of the interval upstream annotation. Default is 2000. |
after |
Length in bp of the interval downstream annotation. Default is 2000. |
mean_or_median |
For average profiles, should the 'mean' or 'median' values be used. Default is 'mean'. |
interpolation_number |
Number of interpolated points to create matrices (see details). Default is 100. |
interpolation_average |
Number of interpolated points of profiles and heatmaps (see details). Default is 10000. |
ignore_strand |
If TRUE, the directionality is ignored, that is all features strands, regardless of annotation in GFF file, are treated as undetermined ("*"). Default is FALSE. |
verbose |
If TRUE, output processing messages. Default is FALSE. |
This method should be called before performing any graphical analysis. It updates two slots of theObject:
SetArrayList
: Contains the binding values to perform
meta-profile (see ?plotProfile); transformation profiles if not in boost mode
(see ?plotTransform) and heatmaps (see ?plotHeatmaps). These values are stored
in a plotSetArray object. This object is created by the method getPlotSetArray
of the 'seqplots' package.
matBindingList
: Contains list of matrices for each
experiment. Each row correspond to an annotation given by gff_vec and the
number of columns is defined by the interpolation_number parameter. These
matrices are used to perform boxplots (see ?boxplotSpike) and correlation plots
(see ?plotCor).
The SetArrayList contains values for 4 kind of representations (profiles and heatmaps): Representation at the start of the annotation (-before/ +after parameters); at the midpoint of the annotation; at the end of the annotation (-before/+after) or at the entire annotation (-before/+after). For representations using the entire annotations and upstream (before)/ downstream intervals, the number of points used for the within annotation interpolation is defined by the interpolation_average parameter.
For details on installing reference genomes, see details of the function 'getPlotSetArray' of the 'seqplots' package.
Returns the same object with binding values in the form of plotSetArray and matrices (see details).
ChIPSeqSpikeDataset
: Method for signature theObject=
'ChIPSeqSpikeDataset'
ChIPSeqSpikeDatasetBoost
: Method for signature theObject=
'ChIPSeqSpikeDatasetBoost'
ChIPSeqSpikeDatasetList
: Method for signature theObject=
'ChIPSeqSpikeDatasetList'
ChIPSeqSpikeDatasetListBoost
: Method for signature theObject=
'ChIPSeqSpikeDatasetListBoost'
Nicolas Descostes
spikeDataset
plotProfile
plotTransform
plotHeatmaps
boxplotSpike
plotCor
getPlotSetArray
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## Mock example on a restricted number of reads
info_file_csv <- system.file("extdata/info.csv", package="ChIPSeqSpike")
bam_path <- system.file(c("extdata/bam_files"), package="ChIPSeqSpike")
bigwig_path <- system.file(c("extdata/bigwig_files"), package="ChIPSeqSpike")
gff_vec <- system.file("extdata/test_coord.gff", package="ChIPSeqSpike")
genome_name <- "hg19"
if(.Platform$OS.type != 'windows') {
csds <- spikeDataset(infoFile = info_file_csv, bamPath = bam_path,
bigWigPath = bigwig_path)
## Copying test files to the current folder
originalBW_vec <- as.character(getBigWigFile(csds))
dir.create("./test_chipseqspike")
result <- file.copy(originalBW_vec, "test_chipseqspike")
csds <- estimateScalingFactors(csds)
## Apply RPM scaling
csds <- scaling(csds, outputFolder = "test_chipseqspike")
## Perform input subtraction
csds <- inputSubtraction(csds)
## Reverse RPM scaling after input subtraction
csds <- scaling(csds, reverse = TRUE)
## Apply exogenous scaling factors
csds <- scaling(csds, type = "exo")
## Extract binding values
csds <- extractBinding(csds, gff_vec, genome_name)
## Delete all files generated in this example
unlink("test_chipseqspike/", recursive = TRUE)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.