Description Usage Arguments See Also Examples
A model is a directed acyclic graph of layers.
1 | keras_model(inputs, outputs = NULL)
|
inputs |
Input layer |
outputs |
Output layer |
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model_sequential()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()
,
train_on_batch()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
library(keras)
# input layer
inputs <- layer_input(shape = c(784))
# outputs compose input + dense layers
predictions <- inputs
layer_dense(units = 64, activation = 'relu')
layer_dense(units = 64, activation = 'relu')
layer_dense(units = 10, activation = 'softmax')
# create and compile model
model <- keras_model(inputs = inputs, outputs = predictions)
model
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.