Description Usage Arguments Note See Also Examples
Keras Model composed of a linear stack of layers
1 | keras_model_sequential(layers = NULL, name = NULL)
|
layers |
List of layers to add to the model |
name |
Name of model |
The first layer passed to a Sequential model should have a defined input
shape. What that means is that it should have received an input_shape
or
batch_input_shape
argument, or for some type of layers (recurrent,
Dense...) an input_dim
argument.
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()
,
train_on_batch()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## Not run:
library(keras)
model <- keras_model_sequential()
model
layer_dense(units = 32, input_shape = c(784))
layer_activation('relu')
layer_dense(units = 10)
layer_activation('softmax')
model
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.