R/activations.R

Defines functions activation_relu activation_elu activation_selu activation_hard_sigmoid activation_linear activation_sigmoid activation_softmax activation_softplus activation_softsign activation_tanh activation_exponential

Documented in activation_elu activation_exponential activation_hard_sigmoid activation_linear activation_relu activation_selu activation_sigmoid activation_softmax activation_softplus activation_softsign activation_tanh

#' Activation functions
#' 
#' Activations functions can either be used through [layer_activation()], or
#' through the activation argument supported by all forward layers.
#' 
#' @details
#'   - `activation_selu()` to be used together with the initialization "lecun_normal".
#'   - `activation_selu()` to be used together with the dropout variant "AlphaDropout".
#' 
#' @param x Tensor
#' @param axis Integer, axis along which the softmax normalization is applied
#' @param alpha Alpha value
#' @param max_value Max value
#' @param threshold Threshold value for thresholded activation.
#' 
#' @return Tensor with the same shape and dtype as \code{x}.
#' 
#' @section References:
#' 
#'   - `activation_selu()`: [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
#' 
#' @export
activation_relu <- function(x, alpha = 0.0, max_value = NULL, threshold = 0.0) {
  args <- list(
    x = x,
    alpha = alpha, 
    max_value = max_value
  )
  if (keras_version() >= "2.2.3")
    args$threshold <- threshold
  
  do.call(keras$activations$relu, args)
}
attr(activation_relu, "py_function_name") <- "relu"


#' @rdname activation_relu
#' @export
activation_elu <- function(x, alpha = 1.0) {
  keras$activations$elu(x, alpha = alpha)
}
attr(activation_elu, "py_function_name") <- "elu"


#' @rdname activation_relu
#' @export
activation_selu <- function(x) {
  keras$activations$selu(x)
}
attr(activation_selu, "py_function_name") <- "selu"


#' @rdname activation_relu
#' @export
activation_hard_sigmoid <- function(x) {
  keras$activations$hard_sigmoid(x)
}
attr(activation_hard_sigmoid, "py_function_name") <- "hard_sigmoid"

#' @rdname activation_relu
#' @export
activation_linear <- function(x) {
  keras$activations$linear(x)
}
attr(activation_linear, "py_function_name") <- "linear"

#' @rdname activation_relu
#' @export
activation_sigmoid <- function(x) {
  keras$activations$softmax(x)
}
attr(activation_sigmoid, "py_function_name") <- "sigmoid"

#' @rdname activation_relu
#' @export
activation_softmax <- function(x, axis = -1) {
  args <- list(x = x)
  if (keras_version() >= "2.0.2")
    args$axis <- as.integer(axis)
  do.call(keras$activations$softmax, args)
}
attr(activation_softmax, "py_function_name") <- "softmax"

#' @rdname activation_relu
#' @export
activation_softplus <- function(x) {
  keras$activations$softplus(x)
}
attr(activation_softplus, "py_function_name") <- "softplus"

#' @rdname activation_relu
#' @export
activation_softsign <- function(x) {
  keras$activations$softsign(x)
}
attr(activation_softsign, "py_function_name") <- "softsign"

#' @rdname activation_relu
#' @export
activation_tanh <- function(x) {
  keras$activations$tanh(x)
}
attr(activation_tanh, "py_function_name") <- "tanh"


#' @rdname activation_relu
#' @export
activation_exponential <- function(x) {
  keras$activations$exponential(x)
}
attr(activation_exponential, "py_function_name") <- "exponential"
dfalbel/keras documentation built on Nov. 27, 2019, 8:16 p.m.