#' Fully-connected RNN where the output is to be fed back to input.
#'
#' @inheritParams layer_dense
#'
#' @param units Positive integer, dimensionality of the output space.
#' @param activation Activation function to use. Default: hyperbolic tangent
#' (`tanh`). If you pass `NULL`, no activation is applied
#' (ie. "linear" activation: `a(x) = x`).
#' @param use_bias Boolean, whether the layer uses a bias vector.
#' @param return_sequences Boolean. Whether to return the last output in the
#' output sequence, or the full sequence.
#' @param return_state Boolean (default FALSE). Whether to return the last state
#' in addition to the output.
#' @param go_backwards Boolean (default FALSE). If TRUE, process the input
#' sequence backwards and return the reversed sequence.
#' @param stateful Boolean (default FALSE). If TRUE, the last state for each
#' sample at index i in a batch will be used as initial state for the sample
#' of index i in the following batch.
#' @param unroll Boolean (default FALSE). If TRUE, the network will be unrolled,
#' else a symbolic loop will be used. Unrolling can speed-up a RNN, although
#' it tends to be more memory-intensive. Unrolling is only suitable for short
#' sequences.
#' @param kernel_initializer Initializer for the `kernel` weights matrix, used
#' for the linear transformation of the inputs.
#' @param recurrent_initializer Initializer for the `recurrent_kernel` weights
#' matrix, used for the linear transformation of the recurrent state.
#' @param bias_initializer Initializer for the bias vector.
#' @param kernel_regularizer Regularizer function applied to the `kernel`
#' weights matrix.
#' @param recurrent_regularizer Regularizer function applied to the
#' `recurrent_kernel` weights matrix.
#' @param bias_regularizer Regularizer function applied to the bias vector.
#' @param activity_regularizer Regularizer function applied to the output of the
#' layer (its "activation")..
#' @param kernel_constraint Constraint function applied to the `kernel` weights
#' matrix.
#' @param recurrent_constraint Constraint function applied to the
#' `recurrent_kernel` weights matrix.
#' @param bias_constraint Constraint function applied to the bias vector.
#' @param dropout Float between 0 and 1. Fraction of the units to drop for the
#' linear transformation of the inputs.
#' @param recurrent_dropout Float between 0 and 1. Fraction of the units to drop
#' for the linear transformation of the recurrent state.
#'
#' @template roxlate-recurrent-layer
#'
#' @section References:
#' - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
#'
#'
#' @export
layer_simple_rnn <- function(object, units, activation = "tanh", use_bias = TRUE,
return_sequences = FALSE, return_state = FALSE, go_backwards = FALSE, stateful = FALSE, unroll = FALSE,
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal", bias_initializer = "zeros",
kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, recurrent_constraint = NULL, bias_constraint = NULL,
dropout = 0.0, recurrent_dropout = 0.0, input_shape = NULL, batch_input_shape = NULL, batch_size = NULL,
dtype = NULL, name = NULL, trainable = NULL, weights = NULL) {
args <- list(
units = as.integer(units),
activation = activation,
use_bias = use_bias,
return_sequences = return_sequences,
go_backwards = go_backwards,
stateful = stateful,
unroll = unroll,
kernel_initializer = kernel_initializer,
recurrent_initializer = recurrent_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
recurrent_regularizer = recurrent_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
recurrent_constraint = recurrent_constraint,
bias_constraint = bias_constraint,
dropout = dropout,
recurrent_dropout = recurrent_dropout,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
if (keras_version() >= "2.0.5")
args$return_state <- return_state
create_layer(keras$layers$SimpleRNN, object, args)
}
#' Gated Recurrent Unit - Cho et al.
#'
#' There are two variants. The default one is based on 1406.1078v3 and
#' has reset gate applied to hidden state before matrix multiplication. The
#' other one is based on original 1406.1078v1 and has the order reversed.
#'
#' The second variant is compatible with CuDNNGRU (GPU-only) and allows
#' inference on CPU. Thus it has separate biases for `kernel` and
#' `recurrent_kernel`. Use `reset_after = TRUE` and
#' `recurrent_activation = "sigmoid"`.
#'
#' @inheritParams layer_simple_rnn
#'
#' @param recurrent_activation Activation function to use for the recurrent
#' step.
#' @param reset_after GRU convention (whether to apply reset gate after or
#' before matrix multiplication). FALSE = "before" (default),
#' TRUE = "after" (CuDNN compatible).
#'
#'
#' @template roxlate-recurrent-layer
#'
#' @section References:
#' - [Learning Phrase Representations using RNN Encoder-Decoder for Statistical
#' Machine Translation](https://arxiv.org/abs/1406.1078)
#' - [On the Properties of Neural Machine Translation:
#' Encoder-Decoder Approaches](https://arxiv.org/abs/1409.1259)
#' - [Empirical
#' Evaluation of Gated Recurrent Neural Networks on Sequence
#' Modeling](http://arxiv.org/abs/1412.3555v1)
#' - [A Theoretically Grounded
#' Application of Dropout in Recurrent Neural
#' Networks](http://arxiv.org/abs/1512.05287)
#'
#' @export
layer_gru <- function(object, units, activation = "tanh", recurrent_activation = "hard_sigmoid", use_bias = TRUE,
return_sequences = FALSE, return_state = FALSE, go_backwards = FALSE, stateful = FALSE, unroll = FALSE, reset_after = FALSE,
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal", bias_initializer = "zeros",
kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, recurrent_constraint = NULL, bias_constraint = NULL,
dropout = 0.0, recurrent_dropout = 0.0, input_shape = NULL, batch_input_shape = NULL, batch_size = NULL,
dtype = NULL, name = NULL, trainable = NULL, weights = NULL) {
args <- list(
units = as.integer(units),
activation = activation,
recurrent_activation = recurrent_activation,
use_bias = use_bias,
return_sequences = return_sequences,
go_backwards = go_backwards,
stateful = stateful,
unroll = unroll,
kernel_initializer = kernel_initializer,
recurrent_initializer = recurrent_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
recurrent_regularizer = recurrent_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
recurrent_constraint = recurrent_constraint,
bias_constraint = bias_constraint,
dropout = dropout,
recurrent_dropout = recurrent_dropout,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
if (keras_version() >= "2.0.5")
args$return_state <- return_state
if (keras_version() >= "2.1.5")
args$reset_after <- reset_after
create_layer(keras$layers$GRU, object, args)
}
#' Fast GRU implementation backed by [CuDNN](https://developer.nvidia.com/cudnn).
#'
#' Can only be run on GPU, with the TensorFlow backend.
#'
#' @inheritParams layer_simple_rnn
#'
#' @family recurrent layers
#'
#' @section References:
#' - [On the Properties of Neural Machine Translation:
#' Encoder-Decoder Approaches](https://arxiv.org/abs/1409.1259)
#' - [Empirical
#' Evaluation of Gated Recurrent Neural Networks on Sequence
#' Modeling](http://arxiv.org/abs/1412.3555v1)
#' - [A Theoretically Grounded
#' Application of Dropout in Recurrent Neural
#' Networks](http://arxiv.org/abs/1512.05287)
#'
#' @export
layer_cudnn_gru <- function(object, units,
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal", bias_initializer = "zeros",
kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, recurrent_constraint = NULL, bias_constraint = NULL,
return_sequences = FALSE, return_state = FALSE, stateful = FALSE,
input_shape = NULL, batch_input_shape = NULL, batch_size = NULL,
dtype = NULL, name = NULL, trainable = NULL, weights = NULL) {
args <- list(
units = as.integer(units),
kernel_initializer = kernel_initializer,
recurrent_initializer = recurrent_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
recurrent_regularizer = recurrent_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
recurrent_constraint = recurrent_constraint,
bias_constraint = bias_constraint,
return_sequences = return_sequences,
return_state = return_state,
stateful = stateful,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
create_layer(keras$layers$CuDNNGRU, object, args)
}
#' Long Short-Term Memory unit - Hochreiter 1997.
#'
#' For a step-by-step description of the algorithm, see [this tutorial](http://deeplearning.net/tutorial/lstm.html).
#'
#' @inheritParams layer_gru
#'
#' @param unit_forget_bias Boolean. If TRUE, add 1 to the bias of the forget
#' gate at initialization. Setting it to true will also force
#' `bias_initializer="zeros"`. This is recommended in [Jozefowicz et
#' al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
#'
#' @template roxlate-recurrent-layer
#'
#' @section References:
#' - [Long short-term memory](http://www.bioinf.jku.at/publications/older/2604.pdf) (original 1997 paper)
#' - [Supervised sequence labeling with recurrent neural networks](http://www.cs.toronto.edu/~graves/preprint.pdf)
#' - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
#'
#' @family recurrent layers
#'
#' @export
layer_lstm <- function(object, units, activation = "tanh", recurrent_activation = "hard_sigmoid", use_bias = TRUE,
return_sequences = FALSE, return_state = FALSE, go_backwards = FALSE, stateful = FALSE, unroll = FALSE,
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal", bias_initializer = "zeros",
unit_forget_bias = TRUE, kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL,
activity_regularizer = NULL, kernel_constraint = NULL, recurrent_constraint = NULL, bias_constraint = NULL,
dropout = 0.0, recurrent_dropout = 0.0, input_shape = NULL, batch_input_shape = NULL, batch_size = NULL,
dtype = NULL, name = NULL, trainable = NULL, weights = NULL) {
args <- list(
units = as.integer(units),
activation = activation,
recurrent_activation = recurrent_activation,
use_bias = use_bias,
return_sequences = return_sequences,
go_backwards = go_backwards,
stateful = stateful,
unroll = unroll,
kernel_initializer = kernel_initializer,
recurrent_initializer = recurrent_initializer,
bias_initializer = bias_initializer,
unit_forget_bias = unit_forget_bias,
kernel_regularizer = kernel_regularizer,
recurrent_regularizer = recurrent_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
recurrent_constraint = recurrent_constraint,
bias_constraint = bias_constraint,
dropout = dropout,
recurrent_dropout = recurrent_dropout,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
if (keras_version() >= "2.0.5")
args$return_state <- return_state
create_layer(keras$layers$LSTM, object, args)
}
#' Fast LSTM implementation backed by [CuDNN](https://developer.nvidia.com/cudnn).
#'
#' Can only be run on GPU, with the TensorFlow backend.
#'
#' @inheritParams layer_lstm
#'
#' @section References:
#' - [Long short-term memory](http://www.bioinf.jku.at/publications/older/2604.pdf) (original 1997 paper)
#' - [Supervised sequence labeling with recurrent neural networks](http://www.cs.toronto.edu/~graves/preprint.pdf)
#' - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
#'
#' @family recurrent layers
#'
#' @export
layer_cudnn_lstm <- function(object, units,
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal",
bias_initializer = "zeros", unit_forget_bias = TRUE,
kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL, activity_regularizer = NULL,
kernel_constraint = NULL, recurrent_constraint = NULL, bias_constraint = NULL,
return_sequences = FALSE, return_state = FALSE, stateful = FALSE,
input_shape = NULL, batch_input_shape = NULL, batch_size = NULL,
dtype = NULL, name = NULL, trainable = NULL, weights = NULL) {
args <- list(
units = as.integer(units),
kernel_initializer = kernel_initializer,
recurrent_initializer = recurrent_initializer,
bias_initializer = bias_initializer,
unit_forget_bias = unit_forget_bias,
kernel_regularizer = kernel_regularizer,
recurrent_regularizer = recurrent_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
recurrent_constraint = recurrent_constraint,
bias_constraint = bias_constraint,
return_sequences = return_sequences,
return_state = return_state,
stateful = stateful,
input_shape = normalize_shape(input_shape),
batch_input_shape = normalize_shape(batch_input_shape),
batch_size = as_nullable_integer(batch_size),
dtype = dtype,
name = name,
trainable = trainable,
weights = weights
)
create_layer(keras$layers$CuDNNLSTM, object, args)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.