context("utils")
source("utils.R")
test_call_succeeds("to_categorical", {
runif(1000, min = 0, max = 9) %>%
round() %>%
matrix(nrow = 1000, ncol = 1) %>%
to_categorical(num_classes = 10)
})
test_call_succeeds("get_file", {
get_file("2010zipcode.zip",
origin = "https://www.irs.gov/pub/irs-soi/2010zipcode.zip",
cache_subdir = "tests")
})
test_call_succeeds("hdf5_matrix", {
if (!keras:::have_h5py())
skip("h5py not available for testing")
X_train = hdf5_matrix('test.h5', 'my_data', start=0, end=150)
y_train = hdf5_matrix('test.h5', 'my_labels', start=0, end=150)
})
test_call_succeeds("normalize", {
data <- runif(1000, min = 0, max = 9) %>% round() %>% matrix(nrow = 1000, ncol = 1)
normalize(data)
})
test_call_succeeds("with_custom_object_scope", {
if (!keras:::have_h5py())
skip("h5py not available for testing")
metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) {
k_mean(y_pred)
})
with_custom_object_scope(c(mean_pred = metric_mean_pred), {
model <- define_model()
model %>% compile(
loss = "binary_crossentropy",
optimizer = optimizer_nadam(),
metrics = metric_mean_pred
)
tmp <- tempfile("model", fileext = ".hdf5")
save_model_hdf5(model, tmp)
model <- load_model_hdf5(tmp)
# generate dummy training data
data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784)
labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10)
model %>% fit(data, labels, epochs = 2, verbose = 0)
})
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.