Description Usage Arguments Details Value Functions Author(s) References See Also Examples
View source: R/connectivity_estimation.distributions.R
These functions return functions that calculate the probability density
function (d.rel.conn.dists.func
), the probability distribution
function (aka the cumulative distribution function;
p.rel.conn.dists.func
) and the quantile function
(q.rel.conn.dists.func
) for relative connectivity given a set of
observed score values, distributions for unmarked and marked individuals, and
an estimate of the fraction of all eggs marked at the source site, p
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | d.rel.conn.dists.func(
obs,
d.unmarked,
d.marked,
p = 1,
N = max(100, min(5000, 2 * length(obs))),
prior.shape1 = 0.5,
prior.shape2 = prior.shape1,
prior.func = function(phi) dbeta(phi, prior.shape1, prior.shape2),
...
)
p.rel.conn.dists.func(
obs,
d.unmarked,
d.marked,
p = 1,
N = max(100, min(5000, 2 * length(obs))),
prior.shape1 = 0.5,
prior.shape2 = prior.shape1,
prior.func = function(phi) dbeta(phi, prior.shape1, prior.shape2),
...
)
q.rel.conn.dists.func(
obs,
d.unmarked,
d.marked,
p = 1,
N = max(100, min(5000, 2 * length(obs))),
prior.shape1 = 0.5,
prior.shape2 = prior.shape1,
prior.func = function(phi) dbeta(phi, prior.shape1, prior.shape2),
...
)
|
obs |
Vector of observed score values for potentially marked individuals |
d.unmarked |
A function representing the PDF of unmarked individuals. Must be normalized so that it integrates to 1 for the function to work properly. |
d.marked |
A function representing the PDF of marked individuals. Must be normalized so that it integrates to 1 for the function to work properly. |
p |
Fraction of individuals (i.e., eggs) marked in the source population. Defaults to 1. |
N |
number of steps between 0 and 1 at which to approximate likelihood
function as input to |
prior.shape1 |
First shape parameter for Beta distributed prior. Defaults to 0.5. |
prior.shape2 |
Second shape parameter for Beta distributed prior.
Defaults to being the same as |
prior.func |
Function for prior distribution. Should take one
parameter, |
... |
Additional arguments for the |
The normalization of the probability distribution is carried out using a
simple, fixed-step trapezoidal integration scheme. By default, the number of
steps between relative connectivity values of 0 and 1 defaults to
2*length(obs)
so long as that number is comprised between 100
and 5000
.
A function that takes one argument (the relative connectivity for
d.rel.conn.dists.func
and p.rel.conn.dists.func
; the quantile
for q.rel.conn.dists.func
) and returns the probability density,
cumulative probability or score value, respectively. The returned function
accepts both vector and scalar input values.
d.rel.conn.dists.func
: Returns a function that is PDF for relative
connectivity
p.rel.conn.dists.func
: Returns a function that is cumulative
probability distribution for relative connectivity
q.rel.conn.dists.func
: Returns a function that is quantile
function for relative connectivity
David M. Kaplan dmkaplan2000@gmail.com
Kaplan DM, Cuif M, Fauvelot C, Vigliola L, Nguyen-Huu T, Tiavouane J and Lett C (in press) Uncertainty in empirical estimates of marine larval connectivity. ICES Journal of Marine Science. doi:10.1093/icesjms/fsw182.
Other connectivity estimation:
d.rel.conn.beta.prior()
,
d.rel.conn.finite.settlement()
,
d.rel.conn.multinomial.unnorm()
,
d.rel.conn.multiple()
,
d.rel.conn.unif.prior()
,
dual.mark.transmission()
,
optim.rel.conn.dists()
,
r.marked.egg.fraction()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | library(ConnMatTools)
data(damselfish.lods)
# Histograms of simulated LODs
l <- seq(-1,30,0.5)
h.in <- hist(damselfish.lods$in.group,breaks=l)
h.out <- hist(damselfish.lods$out.group,breaks=l)
# PDFs for marked and unmarked individuals based on simulations
d.marked <- stepfun.hist(h.in)
d.unmarked <- stepfun.hist(h.out)
# Fraction of adults genotyped at source site
p.adults <- 0.25
# prior.shape1=1 # Uniform prior
prior.shape1=0.5 # Jeffreys prior
# Fraction of eggs from one or more genotyped parents
p <- dual.mark.transmission(p.adults)$p
# PDF for relative connectivity
D <- d.rel.conn.dists.func(damselfish.lods$real.children,
d.unmarked,d.marked,p,
prior.shape1=prior.shape1)
# Estimate most probable value for relative connectivity
phi.mx <- optim.rel.conn.dists(damselfish.lods$real.children,
d.unmarked,d.marked,p)$phi
# Estimate 95% confidence interval for relative connectivity
Q <- q.rel.conn.dists.func(damselfish.lods$real.children,
d.unmarked,d.marked,p,
prior.shape1=prior.shape1)
# Plot it up
phi <- seq(0,1,0.001)
plot(phi,D(phi),type="l",
xlim=c(0,0.1),
main="PDF for relative connectivity",
xlab=expression(phi),
ylab="Probability density")
abline(v=phi.mx,col="green",lty="dashed")
abline(v=Q(c(0.025,0.975)),col="red",lty="dashed")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.