tests/testthat/test-example_dietary_fat.R

# Generated by vignette example_dietary_fat.Rmd: do not edit by hand
# Instead edit example_dietary_fat.Rmd and then run precompile.R

skip_on_cran()



params <-
list(run_tests = FALSE)

## ----code=readLines("children/knitr_setup.R"), include=FALSE------------------


## ----eval = FALSE-------------------------------------------------------------
## library(multinma)
## options(mc.cores = parallel::detectCores())

## ----setup, echo = FALSE------------------------------------------------------
library(multinma)
nc <- switch(tolower(Sys.getenv("_R_CHECK_LIMIT_CORES_")), 
             "true" =, "warn" = 2, 
             parallel::detectCores())
options(mc.cores = nc)


## -----------------------------------------------------------------------------
head(dietary_fat)


## -----------------------------------------------------------------------------
diet_net <- set_agd_arm(dietary_fat, 
                        study = studyc,
                        trt = trtc,
                        r = r, 
                        E = E,
                        trt_ref = "Control",
                        sample_size = n)
diet_net


## -----------------------------------------------------------------------------
summary(normal(scale = 100))


## -----------------------------------------------------------------------------
diet_fit_FE <- nma(diet_net, 
                   trt_effects = "fixed",
                   prior_intercept = normal(scale = 100),
                   prior_trt = normal(scale = 100))


## -----------------------------------------------------------------------------
diet_fit_FE


## ----eval=FALSE---------------------------------------------------------------
## # Not run
## print(diet_fit_FE, pars = c("d", "mu"))


## ----diet_FE_pp_plot----------------------------------------------------------
plot_prior_posterior(diet_fit_FE)


## -----------------------------------------------------------------------------
summary(normal(scale = 100))
summary(half_normal(scale = 5))


## ----eval=FALSE---------------------------------------------------------------
## diet_fit_RE <- nma(diet_net,
##                    trt_effects = "random",
##                    prior_intercept = normal(scale = 100),
##                    prior_trt = normal(scale = 100),
##                    prior_het = half_normal(scale = 5))

## ----echo=FALSE, warning=FALSE------------------------------------------------
diet_fit_RE <- nowarn_on_ci(
                 nma(diet_net, 
                     trt_effects = "random",
                     prior_intercept = normal(scale = 100),
                     prior_trt = normal(scale = 100),
                     prior_het = half_normal(scale = 5))
                 )


## -----------------------------------------------------------------------------
diet_fit_RE


## ----eval=FALSE---------------------------------------------------------------
## # Not run
## print(diet_fit_RE, pars = c("d", "mu", "delta"))


## ----diet_RE_pp_plot----------------------------------------------------------
plot_prior_posterior(diet_fit_RE, prior = c("trt", "het"))


## -----------------------------------------------------------------------------
(dic_FE <- dic(diet_fit_FE))

## -----------------------------------------------------------------------------
(dic_RE <- dic(diet_fit_RE))


## ----diet_FE_resdev_plot------------------------------------------------------
plot(dic_FE)


## ----diet_RE_resdev_plot------------------------------------------------------
plot(dic_RE)


## ----diet_pred_FE, fig.height = 2---------------------------------------------
pred_FE <- predict(diet_fit_FE, 
                   baseline = distr(qnorm, mean = -3, sd = 1.77^-0.5), 
                   type = "response")
pred_FE
plot(pred_FE)

## ----diet_pred_RE, fig.height = 2---------------------------------------------
pred_RE <- predict(diet_fit_RE, 
                   baseline = distr(qnorm, mean = -3, sd = 1.77^-0.5), 
                   type = "response")
pred_RE
plot(pred_RE)


## ----diet_pred_FE_all, fig.height=10------------------------------------------
pred_FE_studies <- predict(diet_fit_FE, type = "response")
pred_FE_studies
plot(pred_FE_studies) + ggplot2::facet_grid(Study~., labeller = ggplot2::label_wrap_gen(width = 10))


## ----diet_tests_tests, include=FALSE, eval=params$run_tests-------------------
#--- Test against TSD 2 results ---
library(testthat)
library(dplyr)

tol <- 0.05
tol_dic <- 0.1

# Relative effects
diet_FE_releff <- as.data.frame(relative_effects(diet_fit_FE))

test_that("FE relative effects", {
  expect_equivalent(diet_FE_releff$mean, -0.01, tolerance = tol)
  expect_equivalent(diet_FE_releff$sd, 0.054, tolerance = tol)
  expect_equivalent(diet_FE_releff$`2.5%`, -0.11, tolerance = tol)
  expect_equivalent(diet_FE_releff$`50%`, -0.01, tolerance = tol)
  expect_equivalent(diet_FE_releff$`97.5%`, 0.10, tolerance = tol)
})

diet_RE_releff <- as.data.frame(relative_effects(diet_fit_RE))

test_that("RE relative effects", {
  expect_equivalent(diet_RE_releff$mean, -0.02, tolerance = tol)
  expect_equivalent(diet_RE_releff$sd, 0.09, tolerance = tol)
  expect_equivalent(diet_RE_releff$`2.5%`, -0.19, tolerance = tol)
  expect_equivalent(diet_RE_releff$`50%`, -0.01, tolerance = tol)
  expect_equivalent(diet_RE_releff$`97.5%`, 0.16, tolerance = tol)
})

# RE heterogeneity SD
diet_RE_sd <- as.data.frame(summary(diet_fit_RE, pars = "tau"))

test_that("RE heterogeneity SD", {
  expect_equivalent(diet_RE_sd$mean, 0.13, tolerance = tol)
  expect_equivalent(diet_RE_sd$sd, 0.12, tolerance = tol)
  expect_equivalent(diet_RE_sd$`2.5%`, 0.00, tolerance = tol)
  expect_equivalent(diet_RE_sd$`50%`, 0.10, tolerance = tol)
  expect_equivalent(diet_RE_sd$`97.5%`, 0.43, tolerance = tol)
})

# DIC
test_that("FE DIC", {
  expect_equivalent(dic_FE$resdev, 23.32, tolerance = tol_dic)
  expect_equivalent(dic_FE$pd, 10.9, tolerance = tol_dic)
  expect_equivalent(dic_FE$dic, 33.2, tolerance = tol_dic)
})

test_that("RE DIC", {
  expect_equivalent(dic_RE$resdev, 21.5, tolerance = tol_dic)
  expect_equivalent(dic_RE$pd, 13.3, tolerance = tol_dic)
  expect_equivalent(dic_RE$dic, 34.8, tolerance = tol_dic)
})

# Predictions
diet_pred_FE <- as.data.frame(pred_FE)

test_that("FE predicted probabilities", {
  expect_equivalent(diet_pred_FE$mean, c(0.06, 0.06), tolerance = tol_dic)
  expect_equivalent(diet_pred_FE$sd, c(0.04, 0.04), tolerance = tol_dic)
  expect_equivalent(diet_pred_FE$`2.5%`, c(0.01, 0.01), tolerance = tol_dic)
  expect_equivalent(diet_pred_FE$`50%`, c(0.05, 0.05), tolerance = tol_dic)
  expect_equivalent(diet_pred_FE$`97.5%`, c(0.18, 0.18), tolerance = tol_dic)
})

diet_pred_RE <- as.data.frame(pred_RE)

test_that("RE predicted probabilities", {
  expect_equivalent(diet_pred_RE$mean, c(0.06, 0.06), tolerance = tol_dic)
  expect_equivalent(diet_pred_RE$sd, c(0.04, 0.04), tolerance = tol_dic)
  expect_equivalent(diet_pred_RE$`2.5%`, c(0.01, 0.01), tolerance = tol_dic)
  expect_equivalent(diet_pred_RE$`50%`, c(0.05, 0.05), tolerance = tol_dic)
  expect_equivalent(diet_pred_RE$`97.5%`, c(0.18, 0.18), tolerance = tol_dic)
})

# Predictions specifying study for baseline
test_that("Specifying study for baseline gives correct result", {
  pred_FE_DART <- predict(diet_fit_FE, type = "response", baseline = "DART")
  expect_identical(c(as.array(pred_FE_DART)),
                   c(as.array(pred_FE_studies)[ , , 1:2]))
})

# Test identical model treating data as IPD
diet_net_ipd <- set_ipd(dietary_fat, 
                        study = studyc,
                        trt = trtc,
                        r = r, 
                        E = E,
                        trt_ref = "Control")

diet_fit_FE_ipd <- nma(diet_net_ipd, 
                       trt_effects = "fixed",
                       prior_intercept = normal(scale = 100),
                       prior_trt = normal(scale = 100))

diet_fit_RE_ipd <- nowarn_on_ci(
                     nma(diet_net_ipd, 
                         trt_effects = "random",
                         prior_intercept = normal(scale = 100),
                         prior_trt = normal(scale = 100),
                         prior_het = half_normal(scale = 5))
                   )

# Relative effects
diet_FE_ipd_releff <- as.data.frame(relative_effects(diet_fit_FE_ipd))

test_that("IPD FE relative effects", {
  expect_equivalent(diet_FE_ipd_releff$mean, -0.01, tolerance = tol)
  expect_equivalent(diet_FE_ipd_releff$sd, 0.054, tolerance = tol)
  expect_equivalent(diet_FE_ipd_releff$`2.5%`, -0.11, tolerance = tol)
  expect_equivalent(diet_FE_ipd_releff$`50%`, -0.01, tolerance = tol)
  expect_equivalent(diet_FE_ipd_releff$`97.5%`, 0.10, tolerance = tol)
})

diet_RE_ipd_releff <- as.data.frame(relative_effects(diet_fit_RE_ipd))

test_that("IPD RE relative effects", {
  expect_equivalent(diet_RE_ipd_releff$mean, -0.02, tolerance = tol)
  expect_equivalent(diet_RE_ipd_releff$sd, 0.09, tolerance = tol)
  expect_equivalent(diet_RE_ipd_releff$`2.5%`, -0.19, tolerance = tol)
  expect_equivalent(diet_RE_ipd_releff$`50%`, -0.01, tolerance = tol)
  expect_equivalent(diet_RE_ipd_releff$`97.5%`, 0.16, tolerance = tol)
})

# RE heterogeneity SD
diet_RE_ipd_sd <- as.data.frame(summary(diet_fit_RE_ipd, pars = "tau"))

test_that("IPD RE heterogeneity SD", {
  expect_equivalent(diet_RE_ipd_sd$mean, 0.13, tolerance = tol)
  expect_equivalent(diet_RE_ipd_sd$sd, 0.12, tolerance = tol)
  expect_equivalent(diet_RE_ipd_sd$`2.5%`, 0.00, tolerance = tol)
  expect_equivalent(diet_RE_ipd_sd$`50%`, 0.10, tolerance = tol)
  expect_equivalent(diet_RE_ipd_sd$`97.5%`, 0.43, tolerance = tol)
})

# DIC
dic_FE_ipd <- dic(diet_fit_FE_ipd)
test_that("IPD FE DIC", {
  expect_equivalent(dic_FE_ipd$resdev, 23.32, tolerance = tol_dic)
  expect_equivalent(dic_FE_ipd$pd, 10.9, tolerance = tol_dic)
  expect_equivalent(dic_FE_ipd$dic, 33.2, tolerance = tol_dic)
})

dic_RE_ipd <- dic(diet_fit_RE_ipd)
test_that("IPD RE DIC", {
  expect_equivalent(dic_RE_ipd$resdev, 21.5, tolerance = tol_dic)
  expect_equivalent(dic_RE_ipd$pd, 13.3, tolerance = tol_dic)
  expect_equivalent(dic_RE_ipd$dic, 34.8, tolerance = tol_dic)
})


# Force clean up
rm(list = ls())
gc()
dmphillippo/multinma documentation built on April 12, 2025, 11:41 a.m.