R/two_stage_design.R

Defines functions two_stage_design

Documented in two_stage_design

#' Two-stage design
#'
#' Two-stage design for a modestly-weighted log-rank test
#'
#' @param t_star Parameter of the modestly-weighted log-rank test. Setting t_star=0 corresponds to a standard log-rank test.
#' @param model The piecewise hazard model.
#'   A list containing the \code{change_points} and \code{lambdas}.
#' @param recruitment List of recruitment information.
#'   Containing \enumerate{
#'                 \item Sample size on control, \code{n_0}
#'                 \item Sample size on experimental, \code{n_1}
#'                 \item Recruitment period, \code{r_period}
#'                 \item Recruitment parameter for power model, \code{k}
#'               }
#' @param dco_int The time of the interim analysis in time-units since start of the trial.
#' @param dco_final The time of the final analysis in time-units since start of the trial.
#' @param events_int May be specified instead of \code{dco_int}. The number of events that triggers the interim analysis.
#' @param events_final May be specified instead of \code{dco_final}. The number of events that triggers the final analysis.
#' @param alpha_one_sided One-sided alpha level.
#' @param alpha_spending_f The alpha-spending function. Default is the Lan-DeMets O'Brien-Fleming function.
#' @param length_t Number of cutpoints to use when approximating the distribution of the MWLRT-statistic. Default is 18. Can be increased for greater accuracy.
#' @param{rho} rho parameter in a Fleming-Harrington test. Default is NULL. Only used if F-H test used instead of MWLRT.
#' @param{gamma} gamma parameter in a Fleming-Harrington test. Default is NULL. Only used if F-H test used instead of MWLRT.
#' @return A list describing the design.
#' @export

two_stage_design <- function(t_star = NULL,
                             model,
                             recruitment,
                             dco_int,
                             dco_final,
                             events_int = NULL,
                             events_final = NULL,
                             alpha_one_sided = 0.025,
                             alpha_spend_f = ldobf,
                             length_t = 18,
                             rho = NULL,
                             gamma = NULL){

  if (all(is.null(c(t_star, rho, gamma)))) stop("Either t_star or rho, gamma must be specified")
  if (is.null(t_star) && is.null(rho)) stop("rho and gamma must be specified")
  if (is.null(t_star) && is.null(gamma)) stop("rho and gamma must be specified")

  if (is.null(dco_int) && is.null(events_int)) stop("Either dco_int or events_int must be specified.")
  if (is.null(dco_final) && is.null(events_final)) stop("Either dco_final or events_final must be specified.")
  if (is.null(dco_int)){

    dco_int <- expected_dco_two_arm(total_events = events_int,
                                    recruitment = recruitment,
                                    model = model)
  }
  if (is.null(dco_final)){

    dco_final <- expected_dco_two_arm(total_events = events_final,
                                      recruitment = recruitment,
                                      model = model)
  }
  #####################################

  final_analysis <- ncp_power(t_star = t_star,
                              rho = rho,
                              gamma = gamma,
                              model = model,
                              recruitment = recruitment,
                              dco = dco_final,
                              length_t = length_t)


  ######################################

  interim_analysis <- ncp_power(t_star = t_star,
                                rho = rho,
                                gamma = gamma,
                                model = model,
                                recruitment = recruitment,
                                dco = dco_int,
                                length_t = length_t)


  ######################################
  info_frac <- interim_analysis$var_u / final_analysis$var_u
  ######################################


  cumulative_spend <- alpha_spend_f(c(info_frac, 1),
                                    alpha_one_sided = alpha_one_sided)

  crit_1 <- qnorm(1 - cumulative_spend[1])
  crit_2 <- uniroot(find_crit_2, c(0, 10),
                    crit_1 = crit_1,
                    info_frac = info_frac,
                    alpha_one_sided = alpha_one_sided)$root


  overall_power <- 1 - mvtnorm::pmvnorm(lower = c(-Inf, -Inf),
                                        upper = c(crit_1, crit_2),
                                        mean = -c(interim_analysis$ncp, final_analysis$ncp),
                                        sigma = matrix(c(1, sqrt(info_frac),
                                                         sqrt(info_frac), 1), nrow = 2))[1]


  ### Expected duration of the trial
  p_early_stop_alt <- pnorm(-crit_1, mean = interim_analysis$ncp)
  p_early_stop_null_approx <- pnorm(-crit_1, mean = 0)
  expected_t_alt <- dco_int + (1 - p_early_stop_alt) * (dco_final - dco_int)
  expected_t_null_approx <- dco_int + (1 - p_early_stop_null_approx) * (dco_final - dco_int)


  list(critical_values = -c(crit_1,crit_2),
       p_early_stop = c(under_alternative = p_early_stop_alt,
                        under_null_approx = p_early_stop_null_approx),
       expected_t = c(under_alternative = expected_t_alt,
                      under_null_approx = expected_t_null_approx),
       overall_power = overall_power,
       n_events = c(interim = interim_analysis$total_events,
                           final = final_analysis$total_events),
       var_u = c(interim = interim_analysis$var_u,
                 final = final_analysis$var_u),
       ncp_z = c(interim = interim_analysis$ncp,
                 final = final_analysis$ncp),
       t_star = t_star,
       rho = rho,
       gamma = gamma,
       model = model,
       recruitment = recruitment,
       dco = c(dco_int = dco_int,
               dco_final = dco_final),
       alpha_spend_f = alpha_spend_f,
       alpha_one_sided = alpha_one_sided)

}
dominicmagirr/gsdelayed documentation built on May 15, 2024, 8:24 a.m.