Description Usage Arguments Value Author(s) See Also Examples
You can create a plot of the VAE model. This plot can help you check that the model is connected the way you intended. The node colors indicate the components of the VAE.
1 2 3 4 5 6 |
x |
VAE model |
node_color |
node colors for encoder(default: tomato), mean vector(default: orange), standard deviation vector(default: lavender), latent_vector(default: lightblue), decoder(default: palegreen), and condition(default: gray) |
plot for the model architecture
Dongmin Jung
purrr::map, purrr::map_chr, purrr::pluck, purrr::imap_dfr, DiagrammeR::grViz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | ### simulate differentially expressed genes
set.seed(1)
g <- 3
n <- 100
m <- 1000
mu <- 5
sigma <- 5
mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
rownames(mat) <- paste0("gene", seq_len(m))
colnames(mat) <- paste0("cell", seq_len(n*g))
group <- factor(sapply(seq_len(g), function(x) {
rep(paste0("group", x), n)
}))
names(group) <- colnames(mat)
mu_upreg <- 6
sigma_upreg <- 10
deg <- 100
for (i in seq_len(g)) {
mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <-
mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
}
# positive expression only
mat[mat < 0] <- 0
x_train <- as.matrix(t(mat))
### model
batch_size <- 32
original_dim <- 1000
intermediate_dim <- 512
epochs <- 2
# VAE
vae_result <- fit_vae(x_train = x_train,
encoder_layers = list(layer_input(shape = c(original_dim)),
layer_dense(units = intermediate_dim,
activation = "relu")),
decoder_layers = list(layer_dense(units = intermediate_dim,
activation = "relu"),
layer_dense(units = original_dim,
activation = "sigmoid")),
epochs = epochs, batch_size = batch_size,
validation_split = 0.5,
use_generator = FALSE,
callbacks = keras::callback_early_stopping(
monitor = "val_loss",
patience = 10,
restore_best_weights = TRUE))
# plot
plot_vae(vae_result$model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.