R/lap.R

Defines functions set_lap_method do_lap

Documented in do_lap

#' @title Linear (sum) assignment problem
#'
#' @description Compute the best bipartite matching
#' using one of three methods. For an n x n score matrix it find
#' \eqn{\max_{v\in \Pi_n} \sum_{i=1}^n score_{i, v(i)}}
#' where \eqn{\Pi_n} denotes all permutations on n objects.
#'
#' @param score matrix of pairwise scores
#' @param method One of "lapjv", "lapmod", or "clue"
#'
#'
#' @rdname do_lap
#'
#' @return \code{do_lap} returns a vector which indicates the
#'  best matching column for each row.
#'
#'
#' @details Solves a linear assignment using one of three methods.
#'  "clue" uses \code{solve_lsap} from the clue package.
#'  "lapjv" uses the Jonker-Volgenaut approach implemented in this package.
#'  "lapmod" use a modification of JV that exploits sparsity in the score matrix.
#'  
#'  Scores do not need to be non-negative. For "clue" the scores are pre-translated to be
#'  non-negative which preserves the LAP solution.
#'
#'
#' @references R. Jonker, A. Volgenant (1987). \emph{A shortest augmenting path algorithm
#' for dense and sparse linear assignment problems}. Computing, pages 325-340.
#' @references A. Volgenant (1996). \emph{Linear and Semi-Assignment Problems: A
#'   Core Oriented Approach}. Computer Ops Res., pages 917-932.
#' @references C. H. Papadimitriou and K. Steiglitz (1998). \emph{Combinatorial Optimization:
#' Algorithms and Complexity}. Courier Corporation.
#' @examples
#' set.seed(12345)
#' cost <- Matrix::rsparsematrix(10, 10, .5)
#' cbind(
#'  do_lap(cost, "lapjv"),
#'  do_lap(cost, "lapmod"),
#'  do_lap(cost, "clue")
#' )
#'
#' @export
do_lap <- function(score, method = "clue"){
  if (!inherits(score, c("matrix", "Matrix"))) {
    stop("score must a matrix-like object.")
  }
  n <- nrow(score)
  method <- set_lap_method(method, n, n)
  switch(method,
    lapjv = {
      score <- as.matrix(score)
      lapjv(score, # round(score * n ^ 2 * max(score)),
        maximize = TRUE)
    },
    lapmod = {
      if( inherits(score, "splrMatrix") ){
        lapmod(splr_to_sparse(score),
          maximize = TRUE)
      } else {
        lapmod(score, maximize = TRUE)
      }
    },
    clue = {
      score <- as.matrix(score)
      score <- score - min(score)
      as.vector(clue::solve_LSAP(score,
        maximum = TRUE))
    },
    stop(paste0("The LAP method '", method,
        "' is not implemented. Please use one of 'lapjv', 'lapmod', or 'clue'."))
  )
}

set_lap_method <- function(lap_method, totv1, totv2){
  methods <- c("lapmod", "lapjv", "clue") #, "sinkhorn")
  if (!is.null(lap_method) && !(lap_method %in% methods)){
    stop(paste("Unrecognized LAP method:", lap_method,
      "Please use one of:", paste(methods, collapse = " ")))
  }
  if (is.null(lap_method)){
    if (totv1 / totv2 < 0.5 || totv2 / totv1 < 0.5) {
      lap_method <- "lapmod"
    } else {
      lap_method <- "clue"
    }
  }
  lap_method
}


# project_to_ds_l2 <- function(m, max_iter, tol) {
#   # Iterate G_t <- [G_t + 1/n * (I - G_t + 11^T G_t/n)11^T - 11^T G_t/n)^+
# }
dpmcsuss/iGraphMatch documentation built on May 22, 2024, 8:52 p.m.