R/regression_modelsig.R

Defines functions regression_modelsig

Documented in regression_modelsig

#' Regression Model Fit
#'
#' Displays a table for the fit of regression models. Multiple models can
#' be added (x, y, and z).
#' @param x a model object
#' @param y a model object
#' @param z a model object
#' @param print Create a knitr table for displaying as html table?
#'     (default = TRUE)
#' @export
#'

regression_modelsig <- function(x, y = NULL, z = NULL, print = TRUE) {
  x_formula <- insight::find_formula(x)$conditional |>
    deparse() |>
    stringr::str_trim("left") |>
    paste(collapse = "")
  x_n <- insight::model_info(x)$n_obs
  dv <- insight::find_response(x)

  x_table <- car::Anova(x, type = "III")
  x_table <- dplyr::mutate(x_table,
                           Term = rownames(x_table),
                           Term = ifelse(Term == "Residuals",
                                         "Residual", "Regression"),
                           Model = "H1")
  x_table <- dplyr::group_by(x_table, Model, Term)
  x_table <- dplyr::summarise(x_table, Df = sum(Df), `Sum Sq` = sum(`Sum Sq`))
  x_table <- dplyr::ungroup(x_table)
  x_table <- dplyr::mutate(x_table, `Mean Sq` = `Sum Sq` / Df)

  x_fit <- broom::glance(x)
  x_fit <- dplyr::select(x_fit, statistic, p.value)
  x_fit <- dplyr::mutate(x_fit, Term = "Regression")

  x_table <- merge(x_table, x_fit, by = "Term", all = TRUE)
  x_table <- dplyr::select(x_table,
                           Model, Term, `Sum Sq`, Df, `Mean Sq`,
                           statistic, p.value)
  footer_x <- paste("H1: ", x_formula, "; N = ", x_n, sep = "")

  if (!is.null(y)) {
    y_formula <- insight::find_formula(y)$conditional |>
      deparse() |>
      stringr::str_trim("left") |>
      paste(collapse = "")

    y_formula
    y_n <- insight::model_info(y)$n_obs
    y_table <- car::Anova(y, type = "III")
    y_table <- dplyr::mutate(y_table,
                             Term = rownames(y_table),
                             Term = ifelse(Term == "Residuals",
                                           "Residual", "Regression"),
                             Model = "H2")
    y_table <- dplyr::group_by(y_table, Model, Term)
    y_table <- dplyr::summarise(y_table, Df = sum(Df), `Sum Sq` = sum(`Sum Sq`))
    y_table <- dplyr::ungroup(y_table)
    y_table <- dplyr::mutate(y_table, `Mean Sq` = `Sum Sq` / Df)

    y_fit <- broom::glance(y)
    y_fit <- dplyr::select(y_fit, statistic, p.value)
    y_fit <- dplyr::mutate(y_fit, Term = "Regression")

    y_table <- merge(y_table, y_fit, by = "Term", all = TRUE)
    y_table <- dplyr::select(y_table,
                             Model, Term, `Sum Sq`, Df, `Mean Sq`,
                             statistic, p.value)
    footer_y <- paste("H2: ", y_formula, "; N = ", y_n, sep = "")
  } else {
    y_table <- data.frame()
  }
  if (!is.null(z)) {
    z_formula <- insight::find_formula(z)$conditional |>
      deparse() |>
      stringr::str_trim("left") |>
      paste(collapse = "")
    z_n <- insight::model_info(z)$n_obs
    z_table <- car::Anova(z, type = "III")
    z_table <- dplyr::mutate(z_table,
                             Term = rownames(z_table),
                             Term = ifelse(Term == "Residuals",
                                           "Residual", "Regression"),
                             Model = "H3")
    z_table <- dplyr::group_by(z_table, Model, Term)
    z_table <- dplyr::summarise(z_table, Df = sum(Df), `Sum Sq` = sum(`Sum Sq`))
    z_table <- dplyr::ungroup(z_table)
    z_table <- dplyr::mutate(z_table, `Mean Sq` = `Sum Sq` / Df)

    z_fit <- broom::glance(z)
    z_fit <- dplyr::select(z_fit, statistic, p.value)
    z_fit <- dplyr::mutate(z_fit, Term = "Regression")

    z_table <- merge(z_table, z_fit, by = "Term", all = TRUE)
    z_table <- dplyr::select(z_table,
                             Model, Term, `Sum Sq`, Df, `Mean Sq`,
                             statistic, p.value)
    footer_z <- paste("H2: ", z_formula, "; N = ", z_n, sep = "")
  } else {
    z_table <- data.frame()
  }

  table <- dplyr::bind_rows(x_table, y_table, z_table)
  colnames(table) <- c("Model", "Term", "Sum of Squares", "df", "Mean Square",
                       "F", "p")

  if (print == TRUE) {

    table_title <- paste("ANOVA Table: ", dv, sep = "")

    table <- gt::gt(table) |>
      table_styling() |>
      gt::tab_header(title = table_title) |>
      gt::cols_align(align = "left", columns = c(Model, Term)) |>
      gt::sub_small_vals(columns = p, threshold = .001) |>
      gt::fmt_number(decimals = 3, use_seps = FALSE) |>
      gt::fmt_number(columns = df, decimals = 0, use_seps = FALSE) |>
      gt::tab_footnote(footer_x)

    if (!is.null(y)) {
      table <- gt::tab_footnote(table, footer_y)
    }
    if (!is.null(z)) {
      table <- gt::tab_footnote(table, footer_z)
    }

  } else if (print == FALSE) {
    table <- as.data.frame(table)
  }

  return(table)
}
dr-JT/resultsoutput documentation built on Jan. 4, 2024, 9:09 a.m.