# Set up the data objects used in the examples
# ------------ gait --------------------------
hip <- matrix(scan("hip.txt", 0), 20, 39)
knee <- matrix(scan("knee.txt", 0), 20, 39)
# set up a three-dimensional array of function values
gait <- array(0, c(20, 39, 2))
dimnames(gait) <- list(NULL, NULL, c("Hip Angle", "Knee Angle"))
gait[,,1] <- hip
gait[,,2] <- knee
save(gait, file="gait.rda", compress=TRUE)
# ------------ goods index --------------------------
temp <- matrix(scan("nondurprod.txt",0), 18, 81)
tempmat <- temp[2:13,]
tempmat[12,81] <- 0
nondurables <- matrix(tempmat, 12*81, 1)
nondurables <- nondurables[1:971]
ndur <- 971
# for completeness, make dec 99 equal to dec 98, jan 00 equal to jan 99
nondurables <- c(nondurables,nondurables[961])
nondurables <- c(nondurables,nondurables[962])
ndur <- 973
save(nondurables, file="nondurables.rda", compress=TRUE)
# ------------ Berkeley growth --------------------------
ncasem <- 39
ncasef <- 54
nage <- 31
hgtm <- t(matrix(scan("hgtm.txt", 0), ncasem, byrow=TRUE))
hgtf <- t(matrix(scan("hgtf.txt", 0), ncasef, byrow=TRUE))
age <- c( seq(1, 2, 0.25), seq(3, 8, 1), seq(8.5, 18, 0.5))
growth <- list(hgtm=hgtm, hgtf=hgtf, age=age)
save(growth, file="growth.rda", compress=TRUE)
# ------------ handwriting --------------------------
temp <- array(scan("fdareg.txt",0), c(20,2,1401))
# set up a three-dimensional array
handwrit <- array(0, c(1401, 20, 2))
handwrit[,,1] <- t(temp[,1,])/1000
handwrit[,,2] <- t(temp[,2,])/1000
dimnames(handwrit) <- list(NULL, NULL, c("X", "Y") )
save(handwrit, file="handwrit.rda", compress=TRUE)
# ------------ lip --------------------------
lip <- matrix(scan("lip.txt", 0), 51, 20)
save(lip, file="lip.rda", compress=TRUE)
# ------------ melanoma --------------------------
tempmat <- t(matrix(scan("melanoma.txt", 0), 3, 37))
colnames(tempmat) <- c("index","year","melanoma")
melanoma <- as.data.frame(tempmat)
save(melanoma, file="melanoma.rda", compress=TRUE)
# ------------ pinch --------------------------
pinch <- matrix(scan("pinch.txt",0), 151, 20, byrow=TRUE)
save(pinch, file="pinch.rda", compress=TRUE)
# ------------ refinery --------------------------
refinery <- t(matrix(scan("refinery.txt", 0), 3))
#tval <- refinery[,1] # observation time
#uval <- refinery[,2] # reflux flow
#yval <- refinery[,3] # tray 47 level
colnames(refinery) <- c("tval", "uval", "yval")
refinery <- as.data.frame(refinery)
# center the data on mean values prior to change
refinery <- transform(refinery,
yval = yval - mean(yval[1:60]),
uval = uval - mean(uval[1:60])
)
save(refinery, file="refinery.rda", compress=TRUE)
# ------------ daily weather --------------------------
tempav <- matrix(scan("dailtemp.txt",0), 365, 35)
precav <- matrix(scan("dailprec.txt",0), 365, 35)
# define 11-character names for stations
place <- c(
"Arvida ", "Bagottville", "Calgary ", "Charlottvl ", "Churchill ", "Dawson ",
"Edmonton ", "Fredericton", "Halifax ", "Inuvik ", "Iqaluit ", "Kamloops ",
"London ", "Montreal ", "Ottawa ", "Pr. Albert ", "Pr. George ", "Pr. Rupert ",
"Quebec ", "Regina ", "Resolute ", "Scheffervll", "Sherbrooke ", "St. Johns ",
"Sydney ", "The Pas ", "Thunderbay ", "Toronto ", "Uranium Cty", "Vancouver ",
"Victoria ", "Whitehorse ", "Winnipeg ", "Yarmouth ", "Yellowknife")
dimnames(tempav) <- list(NULL,place)
dimnames(precav) <- list(NULL,place)
# set up indices that order the stations from east to west to north
geogindex <- c(24, 9, 25, 34, 4, 8, 22, 1, 2, 19, 23, 14, 15, 28, 13,
27, 33, 26, 5, 20, 16, 29, 7, 3, 12, 30, 31, 17, 18, 32,
6, 35, 11, 10, 21)
# put the stations in geographical order, from east to west to north
# rather in the original alphatical order.
library(gdata)
Place <- trim(place)
CanadianWeather <- daily
library(gdata)
(place <- trim(daily$place))
CanadianWeather$place <- place
dimnames(CanadianWeather$tempav)[[2]] <- place
dimnames(CanadianWeather$precav)[[2]] <- place
daysPerMonth <- rep(31, 12)
names(daysPerMonth) <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
daysPerMonth[c("Sep", "Apr", "Jun", "Nov")] <- 30
daysPerMonth["Feb"] <- 28
CanadianWeather$month365 <- rep(names(daysPerMonth), daysPerMonth)
CanadianWeather$dayOfYear <- 1:365
Mon. <- with(CanadianWeather,
tapply(dayOfYear, month365, mean))
oM <- order(Mon.)
CanadianWeather$Month <- Mon.[oM]
CanadianWeather$monthlyTemp <- (with(CanadianWeather,
apply(tempav, 2, function(x)tapply(x, month365, mean)) )[oM,])
CanadianWeather$monthlyPrecip <- (with(CanadianWeather,
apply(precav, 2, function(x)tapply(x, month365, mean)) )[oM, ])
CanadianWeather$geogindex <- geogindex
save(CanadianWeather, file="CanadianWeather.rda", compress=TRUE)
str(CanadianWeather)
tempav <- tempav[,geogindex]
precav <- precav[,geogindex]
place <- place[geogindex]
daily <- list(place=place, tempav=tempav, precav=precav)
save(daily, file="daily.rda", compress=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.