# Prep mode data and create model syntax
# this model will be with the "bad responses" removed that I found during the sequence analysis
library(tidyverse)
library(here)
library(janitor)
library(MplusAutomation)
devtools::load_all(helpers = FALSE)
model_name <- "mode_cleaned_notr"
trraw <- PSRCData::trdat #read_rds(here("analysis/data/derived_data/trdat.rds"))
# people who made no trips are missing from the `travel` data, so I add them in with the following
prraw <- PSRCData::prdat #read_rds(here("analysis/data/derived_data/prdat.rds"))
# Bring in ids that are NOT in OG trdat =======================================================
tr_pid <- trraw %>%
dplyr::pull(personid) %>%
unique()
# 1. Get pids of all hh members where whole hh was missing from trraw
### Get the hhids that are not present in trraw. These are hhs w/ nobody who traveled
tr_hid <- trraw %>%
pull(hhid) %>%
unique()
pr_hid <- prraw %>%
pull(hhid) %>%
unique()
hhs_notr_hid <- pr_hid[!(pr_hid %in% tr_hid)] # hhids
### get pids
hhs_notr_pid <- prraw %>%
filter(hhid %in% hhs_notr_hid) %>%
pull(personid) %>%
unique()
# ^ these can be safely added to the travel data
# 2. Get the records where somebody from a hh in trdat ("clean" dataset) didn't travel.
clean_hids <- read_rds(here("analysis/data/derived_data/clean_hids.rds"))
# get pids of ppl who didn't record travel
pr_notr_pid <- prraw %>%
filter(!(personid %in% tr_pid)) %>%
filter(hhid %in% clean_hids) %>%
pull(personid) %>%
unique()
# 3. Combine people whose entire hh is not present in trdat + ppl who do come from hhs with travelers
notr_pid_combo <- c( hhs_notr_pid, pr_notr_pid) %>% unique()
rm(list = setdiff(ls(), c("prraw", "trraw", "notr_pid_combo")))
# ===============================================================
# import clean pids
cleanpids <- read_rds(here("analysis/data/derived_data/clean_pids.rds")) %>%
# add the new pid list to these
c(notr_pid_combo) %>%
unique()
# Save person- and hh-lvl datasets (or ids) that has the new final list of ppl and hhs
write_rds(cleanpids, here("analysis/data/derived_data/clean_pids_notr.rds"))
# filter
prdat <- prraw %>% filter(personid %in% cleanpids)
trdat <- trraw %>% filter(personid %in% cleanpids)
mode <- trdat %>%
# my function to make dummy variables from one variable in the dataset (`main_mode`)
make_dummies(main_mode) %>%
# my fn to add the non-travelers to the dummy dataset
add_nontravelers(prraw = prraw, notr_pids = notr_pid_combo)
rm(list=setdiff(ls(), c("prdat","mode", "notr_pid_combo", "cleanpids")))
# add covariates
sesvars <- read_rds(here("analysis/data/derived_data/pid_SES.rds")) %>%
filter(personid %in% cleanpids)
mode_cov <- sesvars %>%
mutate(hhinclv =
factor(HH_inc_lvl, ordered = FALSE) %>%
# janitor::make_clean_names(unique_sep = NULL)
make.names() %>%
tolower() %>%
str_replace("\\.", "_")
) %>%
select(personid, hhinclv) %>%
left_join(mode, by = "personid") %>%
select(personid, hov:other, everything()) %>%
janitor::clean_names()
# Create model syntax ##################################################################
# if the mplus folder does not exist in /analysis/, then create it
dir.create(here("analysis/Mplus/"))
create_model_dirs(model_name)
model_path <- paste0("analysis/Mplus/", model_name, "/")
model_template <- paste0(model_path, "template/")
# my function to write mplus data to file in the right file location:
write_mplus_data(df = mode_cov,
wd_for_analysis = here(model_path),
filename = paste0(model_name, "-data-mplus-ready.dat"),
writeData = "ifmissing",
hashfilename = TRUE,
dummyCode = c("hhinclv"))
# THEN: MANUALLY write template file ---------------------------
# THEN RUN the following: ----------------
# This section could become a function on its own
templatefile_path <- paste0(model_template, model_name, "_template.txt")
MplusAutomation::createModels(templatefile = templatefile_path)
# Next pieced of code copies .inp files to the model folder from the template folder,
# BUT ONLY IF THE INPUT FILES DO NOT ALREADY EXIST
# IF THEY DO EXIST, they will not be overwritten. This protects changes made to input files to
# optimize model results
inp_list <- list.files(model_template, pattern = ".inp", full.names = TRUE)
file.copy(from = inp_list, to = model_path,
recursive = FALSE,
overwrite = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.